→ Функция распределения Максвелла-Больцмана. Барометрическая формула. Распределение максвелла-больцмана

Функция распределения Максвелла-Больцмана. Барометрическая формула. Распределение максвелла-больцмана

§4 Закон Максвелла о распределении по скоростям и энергиям

Закон распределения молекул идеального газа по скоростям, теоретически полученный Максвеллом в 1860 г. определяет, какое число dN молекул однородного (p = const) одноатомного идеального газа из общего числа N его молекул в единице объёма имеет при данной температуре Т скорости, заключенные в интервале от v до v + dv .

Для вывода функции распределения молекул по скоростям f ( v ) равной отношению числа молекул dN , скорости которых лежат в интервале v ÷v + dv к общему числу молекул N и величине интервала dv

Максвелл использовал два предложения:

а) все направления в пространстве равноправны и поэтому любое направление движения частицы, т.е. любое направление скорости одинаково вероятно. Это свойство иногда называют свойством изотропности функции распределения.

б) движение по трем взаимно перпендикулярным осям независимы т.е. х-компоненты скорости не зависит от того каково значения ее компонент или . И тогда вывод f ( v ) делается сначала для одной компоненты , а затем обобщается на все координаты скорости.

Считается также, что газ состоит из очень большого числа N тождественных молекул находящихся в состоянии беспорядочного теплового движения при одинаковой температуре. Силовые поля на газ не действуют.

Функции f ( v ) определяет относительное число молекул dN ( v )/ N скорости которых лежат в интервале от v до v + dv (например: газ имеет N = 10 6 молекул, при этом dN = 100

молекул имеют скорости от v =100 до v + dv =101 м/с (dv = 1 м ) тогда .

Используя методы теории вероятностей, Максвелл нашел функцию f ( v ) - закон распределения молекул идеального газа по скоростям:

f ( v ) зависит от рода газа (от массы молекулы) и от параметра состояния (от температуры Т )

f ( v ) зависит от отношения кинетической энергии молекулы, отвечающей рассматриваемой скорости к величине kT характеризующей среднюю тепловую энергию молекул газа.

При малых v и функция f ( v ) изменяется практически по параболе . П ри возрастании v множитель уменьшается быстрее, чем растет множитель , т.е. имеется max функции f ( v ) . Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется наиболее вероятной скоростью найдем из условия

Следовательно, с ростом температуры наиболее вероятная скорость растёт, но площадь S , ограниченная кривой функции распределения остаётся неизменной, так как из условия нормировки (так как вероятность достоверного события равна 1), поэтому при повышении температуры кривая распределения f ( v ) будет растягиваться и понижаться.

В статистической физике среднее значение какой-либо величины определяется как интеграл от 0 до бесконечности произведения величины на плотность вероятности этой величины (статистический вес)

< X >=

Тогда средняя арифметическая скорость молекул

И интегрируя по частям получили

Скорости, характеризующие состояние газа

§5 Экспериментальная проверка закона распределения Максвелла - опыт Штерна

Вдоль оси внутреннего цилиндра с целью натянута платиновая проволока, покрытая слоем серебра, которая нагревается током. При нагревании серебро испаряется, атомы серебра вылетают через щель и попадают на внутреннюю поверхность второго цилиндра. Если оба цилиндра неподвижны, то все атомы независимо от их скорости попадают в одно и то же место В. При вращении цилиндров с угловой скоростью ω атома серебра попадут в точки В’, B ’’ и так далее. По величине ω, расстоянию? и смещению х = ВВ’ можно вычислить скорость атомов, попавших в точку В’.

Изображение щели получается размытым. Исследуя толщину осаждённого слоя, можно оценить распределение молекул по скоростям, которое соответствует максвелловскому распределению.

§6 Барометрическая формула

Распределение Больцмана

До сих пор рассматривалось поведение идеального газа, не подверженного воздействию внешних силовых полей. Из опыта хорошо известно, что при действии внешних сил равномерное распространение частиц в пространстве может нарушиться. Так под действием силы тяжести молекулы стремятся опуститься на дно сосуда. Интенсивное тепловое движение препятствует осаждению, и молекулы распространяются так, что их концентрация постепенно уменьшается по мере увеличения высоты.

Выведем закон изменения давления с высотой предполагая, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова. Если атмосферное давление на высоте h равно p , то на высоте h + dh оно равно p + dp (при dh > 0, dp < 0, так как p уменьшается с увеличением h ).

Разность давления на высотах h и h + dh мы можем определить как вес молекул воздуха заключённого в объёме с площадью основания равного 1 и высотой dh .

плотность на высоте h , и так как , то = const .

Тогда

Из уравнения Менделеева-Клапейрона.

Тогда

Или

С изменением высоты от h 1 до h 2 давление изменяется от p 1 до p 2

Пропотенцируем данное выражение (

Барометрическая формула, показывает, как меняется давление с высотой

Мы установили функцию, описывающую распределение молекул по скоростям (распределение Максвелла), и зависимость, характеризующую распределение молекул по значениям потенциальной энергии (распределение Больцмана). Обе зависимости можно объединить в одно обобщенное распределение.

Рассмотрим бесконечно малый объем dV газа, расположенный в точке с радиусом-вектором в большой системе, представляющей идеальный газ при постоянной температуре во внешних силовых полях. Число молекул в выделенном объеме есть n( ) d 3 r. Поскольку объем невелик, в его пределах плотность частиц можно считать постоянной. Это означает, что выполнено условие справедливости распределения Максвелла. Тогда для числа молекул dN , имеющих скорости от v до v + dv и находящихся в объеме d 3 r , в результате объединения зависимостей (3.11) и (3.27), получаем следующую формулу:

Но концентрация молекул n(r) зависит от расположения этого объема во внешних силовых полях:

где n 0 - концентрация молекул в точке, где Е p = 0 . Тогда

Поскольку выражение

представляет собой полную энергию частицы во внешнем потенциальном силовом поле, мы приходим к обобщенному распределению Максвелла - Больцмана по энергиям молекул:

где N - полное число частиц в системе, a dN - число частиц с координатами между r и r + dr и (одновременно) со скоростями между v и v + dv.

Средняя энергия квантового осциллятора. Распределение Максвелла - Больцмана было получено в классической физике, но оно оказалось справедливым и в квантовой механике, где были подвергнуты пересмотру многие казавшиеся незыблемыми положения. В качестве примера рассмотрим задачу о грузе массой т, закрепленном на конце пружинки с жесткостью k. Уравнение движения хорошо известно, и его решением являются гармонические колебания тела с круговой частотой

Классическая энергия системы, моделирующей колебания атомов в молекуле дается формулой (3.62) и может принимать любые значения в зависимости от амплитуды колебаний. Как нам известно из квантовой механики, энергия колебаний квантуется , то есть принимает дискретный ряд значений, определяемых формулой:

В соответствии с общими принципами статистической физики вероятность Р n найти осциллятор в состоянии, характеризуемом неким значением n колебательного квантового числа, определяется формулой

где А - нормировочная постоянная. Для ее определения надо воспользоваться условием нормировки вероятности

Для этого в известную формулу для геометрической прогрессии

подставим значение

Получаем тогда вместо (2)

откуда следует выражение для постоянной А. Используя его в выражении (1), приходим к вероятности

Видно, что чем больше значение квантового числа n, тем меньше вероятность обнаружить осциллятор в таком состоянии. Чем выше температура, тем большие значения n становятся практически значимыми для системы. При

к нулю стремятся все вероятности Р n с n > 1 , и лишь

Иными словами, при нулевой температуре нет тепловых возбуждений, и осциллятор совершает «нулевые колебания» - находится в основном состоянии с наименьшей энергией

Распределение осцилляторов по энергиям в зависимости от температуры системы показано на рис. 3.9

Рис. 3.9. Примерное распределение N = 30 квантовых осцилляторов по энергетическим уровням в зависимости от температуры. Показаны только основной и пять первых возбужденных уровней энергии. При Т = 0 все осцилляторы находятся в основном состоянии. По мере роста температуры становятся доступными все более высокие энергии, и распределение осцилляторов по уровням становится все более равномерным

Для наглядности мы взяли систему из небольшого (N = 30 ) числа осцилляторов (строго говоря, статистические законы применимы к системам с гораздо большим числом частиц).

Возникает вопрос: каково среднее значение колебательного квантового числа n при некоторой температуре T ? Для ответа мы должны подсчитать сумму:

Чтобы сделать это, продифференцируем по q обе части равенства (3.67) для геометрической прогрессии:

откуда получаем

Используя (7) при

получаем из (6) выражение для искомого среднего

Теперь легко получить среднюю энергию осциллятора

где функция cth - гиперболический котангенс определена соотношением

На рис. 3.10 сплошной линией изображена средняя энергия квантового осциллятора, измеренная в единицах ħω ,

в зависимости от «безразмерной температуры»

Рис. 3.10. Средняя энергия квантового осциллятора в зависимости от температуры

Пунктирная линия

соответствует результату классической физики. Действительно, энергия

приходящаяся на одну степень свободы, является средним значением как кинетической, так и потенциальной энергий классического осциллятора, так что среднее значение полной энергии как раз равно

Видно, что квантовые поправки важны при низких температурах: при q < 0,3 средняя энергия осциллятора близка к энергии основного состояния ħω/2 . В таком случае говорят, что колебательные степени свободы «заморожены», то есть тепловой энергии недостаточно для возбуждения колебаний. Но уже при q = 2 обе энергии практически совпадают, то есть квантовые поправки малы. Значение q = 1 можно принять за условную границу между квантовой и классическими областями. Ее смысл прозрачен: при

тепловая энергия равна минимальной энергии возбуждения осциллятора, то есть разности между энергией

первого возбужденного состояния и энергией

основного состояния осциллятора.

Какие же температуры можно считать низкими для осциллятора, моделирующего реальную систему, например молекулу водорода Н 2 ? Характерные частоты молекулярных колебаний располагаются обычно в инфракрасной области и имеют порядок n = 10 14 Гц . Этому соответствуют энергия

и температура

Средняя энергия квантового ротатора. Таким образом, привычные для нас комнатные температуры оказываются достаточно низкими с точки зрения возбуждения колебаний молекул. Посмотрим, что происходит с молекулами при температурах Т < Т К0Л. Так как колебания отсутствуют, двухатомную молекулу можно представить в виде «гантели» - двух атомов, жестко соединенных между собой. Такая система называется ротатором и, как мы видели ранее, имеет пять степеней свободы - три поступательных (движение центра масс) и две вращательных. Энергия вращательного движения классического ротатора имеет вид (3.61). Учитывая связь

между угловой частотой вращения ω , моментом инерции I и моментом импульса L, записываем классическую энергию вращения молекулы как

В квантовой механике квадрат момента импульса квантуется,

Здесь J - ротационное квантовое число, поэтому квантуется и энергия вращательного движения молекулы

Используя это соотношение и распределение Максвелла - Больцмана, можно получить выражение для средней энергии квантового ротатора. Однако в этом случае формулы достаточно сложны, и мы ограничимся качественными результатами. При высоких температурах средняя энергия стремится к классическому значению k B Т, соответствующему двум степеням свободы (вращение вокруг двух ортогональных осей). При низких температурах ротатор будет находиться в основном состоянии, соответствующем значению J = 0 (отсутствие вращения). «Переход» между двумя этими предельными случаями осуществляется, очевидно, при такой температуре Т ВР когда тепловое движение способно возбудить вращательные степени свободы. Минимальная (отличная от нуля) энергия вращения равна

как это следует из формулы для Е ВР при J = 1 . Поэтому

Для момента инерции молекулы можно принять оценку

где m р = 1,67 ·10 –27 кг (масса протона), а а В = 5·10 –11 м - радиус Бора. Получаем тогда

Полученные оценки подтверждаются измерениями молярной теплоемкости при постоянном объеме с nV , которые мы уже обсуждали в предыдущей главе. При температурах ниже 100 К в тепловом движении участвуют только поступательные степени свободы молекулы. Средняя энергия молекулы равна 3kBТ/2, а энергия одного моля - 3N A k B T/2=3RT/2, откуда следует выражение для теплоемкости с nV = 3R/2. В диапазоне температур от 100 К до 200 К молярная теплоемкость увеличивается до значения с nV = 5R/2, что свидетельствует о «размораживании» двух дополнительных (вращательных) степеней свободы (то есть о добавлении k B T энергии на молекулу). В районе температур от 4 000 К до 5 000 К молярная теплоемкость снова увеличивается, на этот раз до значения с nV = 7R/2 . Это «разморозилась» колебательная степень свободы, что принесло дополнительную энергию k B T на молекулу.

Скорость химических реакций. У химиков есть эмпирическое правило, что при повышении температуры на 10 °С скорость реакции удваивается. Это - всего лишь грубое обобщение, из него есть множество исключений, но все же в целом оно более или менее верно. Объяснение можно и здесь дать на основе распределения Максвелла - Больцмана.

Для протекания многих химических реакций необходимо, чтобы энергия участвующих в них частиц превышала некое пороговое значение, которое мы обозначим Е 0 . Т 2 = 310 К это отношение равно Е 0 /k B Т 2 = 14,0 . Числа частиц, участвующих в реакции, определяются соотношениями

Действительно, повышение температуры всего на 10 градусов привело к увеличению на 60 % числа частиц, энергия которых превышает пороговое значение.


Распределения Максвелла и Больцмана. Явления переноса

План лекции:

    Закон Максвелла о распределении молекул по скоростям. Характерные скорости молекул.

    Распределение Больцмана.

    Средняя длина свободного пробега молекул.

    Явления переноса:

а).диффузия;

б).внутреннее трение (вязкость);

в).теплопроводность.

    Закон Максвелла о распределении молекул по скоростям. Характерные скорости молекул.

Молекулы газа движутся хаотически и в результате столкновений скорости их меняются по величине и направлению в газе имеются молекулы как с очень большими, так и с очень малыми скоростями. Можно поставить вопрос о числе молекул, скорости которых лежат в интервале от и для газа в состоянии термодинамического равновесия в отсутствии внешних силовых полей. В этом случае устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется статистическому закону, теоретически выведенному Максвеллом.

Чем больше общее число молекул N, тем большее число молекул N будет обладать скоростями в интервале от и;чем больше интервал скоростей , тем у большего числа молекул значение скоростей будет лежать в указанном интервале.

Введем коэффициент пропорциональности f( .

, 

где f( называется функцией распределения, которая зависит от скорости молекул и характеризует распределение молекул по скоростям.

Если вид функции известен, можно найти число молекул , скорости которых лежат в интервале от до.

С помощью методов теории вероятности и законов статистики Максвелл в 1860г. теоретически получил формулу, определяющую число молекул , обладающих скоростями в интервале от до.

, (2)

- распределение Максвелла показывает, какая доля общего числа молекул данного газа обладает скоростями в интервале от до.

Из уравнений  и  следует вид функции 

- (3)

функция распределения молекул идеального газа по скоростям.

Из (3) видно, что конкретный вид функции зависит от рода газа (от массы молекулы m 0 ) и температуры.

Наиболее часто закон распределения молекул по скоростям записывают в виде:

График функции асимметричен (рис. 1). Положение максимума характеризует наиболее часто встречающуюся скорость, которая называется наиболее вероятной. Скорости, превышающие в , встречаются чаще, чем меньшие скорости.

- доля общего числа молекул, обладающих скоростями в этом интервале.

S общ. = 1.

С повышением температуры максимум распределения сдвигается в сторону больших скоростей, а кривая становится более пологой, однако площадь под кривой не изменяется, т.к. S общ. = 1 .

Наиболее вероятной называют скорость, близкой к которой оказываются скорости большинства молекул данного газа.

Для её определения исследуем на максимум.

4,

Ранее было показано, что

, ,

 .

В МКТ используют также понятие средней арифметической скорости поступательного движения молекул идеального газа.

- равна отношению суммы модулей скоростей всех молекул к

числу молекул.

.

Из сравнения видно (рис.2), что наименьшей является в .

    Распределение Больцмана.

Два фактора - тепловое движение молекул и наличие поле тяготения Земли приводят газ в состояние, при котором его концентрация и давление убывают с высотой.

Если бы не было теплового движения молекул атмосферного воздуха, то все они сосредоточились бы у поверхности Земли. Если бы не было тяготения, то частицы атмосферы рассеялись бы по всей Вселенной. Найдем закон изменения давления с высотой.

Давление столба газа определяется формулой.

Поскольку с увеличением высоты давление уменьшается,

где плотность газа на высоте h .

Найдем p из уравнения Менделеева- Клапейрона

или.

Проведем расчет для изотермической атмосферы, считая, что Т= const (не зависит от высоты).

.

при h=0 , , ,

, , ,

Барометрическая формула, определяет давление газа на любой высоте.

Получим выражение для концентрации молекул на любой высоте.

где - потенциальная энергия молекулы на высоте h .

Распределение Больцмана во внешнем потенциальном поле.

Следовательно, распределение молекул по высоте есть их распределение по энергиям. Больцман доказал, что это распределение справедливо не только в случае потенциального поля сил земного тяготения, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения.

Из распределения Больцмана следует, что молекулы располагаются с большей концентрацией там, где их потенциальная энергия меньше.

Распределение Больцмана - распределение частиц в потенциальном силовом поле.

    Средняя длина свободного пробега молекул.

Вследствие хаотического теплового движения молекулы газа непрерывно сталкиваются друг с другом, проходят сложный зигзагообразный путь. Между 2-мя столкновениями молекулы движутся равномерно прямолинейно.

Минимальное расстояние, на которое сближаются центры 2-х молекул при соударении, называется эффективным диаметром молекулы d (рис. 4).

Величина называется эффективным сечением молекулы.

Найдем среднее число столкновений молекулы однородного газа в единицу времени. Столкновение произойдёт, если центры молекул сблизятся на расстояние, меньшее или равное d . Предполагаем, что молекула движется со скоростью , а остальные молекулы покоятся. Тогда число столкновений определяется числом молекул, центры которых находятся в объёме, представляющем собой цилиндр с основанием и высотой, равной пути, пройденном молекулой за 1с, т.е. .

В действительности все молекулы движутся, и возможность столкновения 2-х молекул определяет их относительная скорость. Можно показать, что если для скоростей молекул принято распределение Максвелла, .

.

Для большинства газов при нормальных условиях

.

Средняя длина свободного пробега - это среднее расстояние, которое проходит молекула между двумя последовательными соударениями. Оно равно отношению пройденного за время t пути к числу соударений за это время.

Распределения Максвелла и Больцмана. Явления переноса

План лекции:

1. Закон Максвелла о распределении молекул по скоростям. Характерные скорости молекул.

2. Распределение Больцмана.

3. Средняя длина свободного пробега молекул.

4. Явления переноса:

а).диффузия;

б).внутреннее трение (вязкость);

в).теплопроводность.

1. Закон Максвелла о распределении молекул по скоростям. Характерные скорости молекул.

Молекулы газа движутся хаотически и в результате столкновений скорости их меняются по величине и направлению; в газе имеются молекулы как с очень большими, так и с очень малыми скоростями. Можно поставить вопрос о числе молекул, скорости которых лежат в интервале от и для газа в состоянии термодинамического равновесия в отсутствии внешних силовых полей. В этом случае устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется статистическому закону, теоретически выведенному Максвеллом.

Чем больше общее число молекул N, тем большее число молекул DN будет обладать скоростями в интервале оти;чем больше интервал скоростей , тем у большего числа молекул значение скоростей будет лежать в указанном интервале.

Введем коэффициент пропорциональности f(u) .

, (1)

где f(u) называется функцией распределения, которая зависит от скорости молекул и характеризует распределение молекул по скоростям.

Если вид функции известен, можно найти число молекул , скорости которых лежат в интервале от до.

С помощью методов теории вероятности и законов статистики Максвелл в 1860г. теоретически получил формулу, определяющую число молекул , обладающих скоростями в интервале от до.

, (2)

- распределение Максвелла показывает, какая доля общего числа молекул данного газа обладает скоростями в интервале от до.

Из уравнений (1) и (2) следует вид функции :

- (3)

функция распределения молекул идеального газа по скоростям.

Из (3) видно, что конкретный вид функции зависит от рода газа (от массы молекулы m 0 ) и температуры.

Наиболее часто закон распределения молекул по скоростям записывают в виде:

График функции асимметричен (рис. 1). Положение максимума характеризует наиболее часто встречающуюся скорость, которая называется наиболее вероятной. Скорости, превышающие u в , встречаются чаще, чем меньшие скорости.

- доля общего числа молекул, обладающих скоростями в этом интервале.

S общ. = 1.

С повышением температуры максимум распределения сдвигается в сторону больших скоростей, а кривая становится более пологой, однако площадь под кривой не изменяется, т.к. S общ. = 1 .

Наиболее вероятной называют скорость, близкой к которой оказываются скорости большинства молекул данного газа.

Для её определения исследуем на максимум.

4 ,

, .

Ранее было показано, что

, ,

=> .

В МКТ используют также понятие средней арифметической скорости поступательного движения молекул идеального газа.

- равна отношению суммы модулей скоростей всех молекул к

числу молекул.

.

Из сравнения видно (рис.2), что наименьшей является u в .

2. Распределение Больцмана.

Два фактора - тепловое движение молекул и наличие поле тяготения Земли приводят газ в состояние, при котором его концентрация и давление убывают с высотой.

Если бы не было теплового движения молекул атмосферного воздуха, то все они сосредоточились бы у поверхности Земли. Если бы не было тяготения, то частицы атмосферы рассеялись бы по всей Вселенной. Найдем закон изменения давления с высотой.

Давление столба газа определяется формулой.

Поскольку с увеличением высоты давление уменьшается,

где r плотность газа на высоте h .

Найдем p из уравнения Менделеева- Клапейрона

или.

Проведем расчет для изотермической атмосферы, считая, что Т=const (не зависит от высоты).

.

при h=0 , , ,

, , ,

Барометрическая формула, определяет давление газа на любой высоте.

Получим выражение для концентрации молекул на любой высоте.

где - потенциальная энергия молекулы на высоте h .

Распределение Больцмана во внешнем потенциальном поле.

Следовательно, распределение молекул по высоте есть их распределение по энергиям. Больцман доказал, что это распределение справедливо не только в случае потенциального поля сил земного тяготения, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения.

Из распределения Больцмана следует, что молекулы располагаются с большей концентрацией там, где их потенциальная энергия меньше.

Распределение Больцмана - распределение частиц в потенциальном силовом поле.

3. Средняя длина свободного пробега молекул.

Вследствие хаотического теплового движения молекулы газа непрерывно сталкиваются друг с другом, проходят сложный зигзагообразный путь. Между 2-мя столкновениями молекулы движутся равномерно прямолинейно.

М инимальное расстояние, на которое сближаются центры 2-х молекул при соударении, называется эффективным диаметром молекулы d (рис. 4).

Величина называется эффективным сечением молекулы.

Найдем среднее число столкновений молекулы однородного газа в единицу времени. Столкновение произойдёт, если центры молекул сблизятся на расстояние, меньшее или равное d . Предполагаем, что молекула движется со скоростью , а остальные молекулы покоятся. Тогда число столкновений определяется числом молекул, центры которых находятся в объёме, представляющем собой цилиндр с основанием и высотой, равной пути, пройденном молекулой за 1с, т.е. .

Скорость каждой конкретной молекулы газа все время меняется. Это обусловлено столкновениями молекул и происходящими в результате изменениями их энергии. Однако в каждый момент времени распределение молекул по скорости остается неизменным, если поддерживаются прежние условия. Ведь число молекул газа чрезвычайно велико!

Скорости молекул газа имеют самые разнообразные значения. Закономерность распределения частиц по скорости называется распределением Максвелла - Больцмана. На рис. 3.7 представлены графики распределения молекул по скорости при двух разных температурах. Следует обратить внимание, что при повышении температуры распределение становится более широким и в целом смещается в сторону более высоких скоростей.

Распределение Максвелла-Больцмана существует не только применительно к молекулярным скоростям, но и к молекулярным энергиям. Типичная кривая такого распределения молекулярных энергий показана на рис. 3.8.

Рис. 3.7. Распределение молекул по скорости.

Рис. 3.8. Распределение молекул по энергии.

Измерение распределения молекул по скорости.

Установленное теоретически распределение Максвелла - Больцмана для молекулярных скоростей экспериментально подтвердил Цартман в 1931 г. Эксперимент Цартмана заключался в пропускании узкого пучка атомов испаряемого металла по направлению к вращающемуся цилиндрическому барабану (рис. 3.9), в котором имеется очень узкая щель. При каждом повороте барабана пучок атомов проникает сквозь щель в барабан. Атомы осаждаются на противоположной стенке барабана, причем самые быстрые из них осаждаются первыми, а самые медленные последними. В результате все атомы с определенной скоростью осаждаются на одно и то же место стенки. Чем больше доля атомов с такой скоростью, тем толше слой металла, осажденного в данном месте. Таким образом, распределение металлической пленки по толщине позволяет воспроизвести распределение атомов по скорости.

 

 

Это интересно: