→ Доказать что система векторов линейно зависима. Линейно зависимые и линейно независимые векторы

Доказать что система векторов линейно зависима. Линейно зависимые и линейно независимые векторы

Пусть - поле скаляров и F - его основное множество. Пусть - -мерное арифметическое пространство над - произвольная система векторов пространства

ОПРЕДЕЛЕНИЕ. Линейной комбинацией системы векторов называется сумма вида где . Скаляры называются коэффициентами линейной комбинации. Линейная комбинация называется нетривиальной, если хотя бы один ее коэффициент отличен от нуля. Линейная комбинация называется тривиальной, если все ее коэффициенты равны нулю.

ОПРЕДЕЛЕНИЕ. Множество всех линейных комбинаций векторов системы называется линейной оболочкой этой системы и обозначается через . Линейной оболочкой пустой системы считается множество, состоящее из нулевого вектора.

Итак, по определению,

Легко видеть, что линейная оболочка данной системы векторов замкнута относительно операций сложения векторов, вычитания векторов и умножений векторов на скаляры.

ОПРЕДЕЛЕНИЕ. Система векторов называется линейно независимой, если для любых скаляров из равенства следуют равенства . Пустая система векторов

считается линейно независимой.

Другими словами, конечная система векторов линейно независима в том и только в том случае, когда всякая нетривиальная линейная комбинация векторов системы не равна нулевому вектору.

ОПРЕДЕЛЕНИЕ. Система векторов называется линейно зависимой, если существуют скаляры не все равные нулю, такие, что

Другими словами, конечная система векторов называется линейно зависимой, если существует нетривиальная линейная комбинация векторов системы, равная нулевому вектору.

Система векторов

называется системой единичных векторов векторного пространства Эта система векторов линейно независима. В самом деле, для любых скаляров из равенства следует равенство и, значит, равенства

Рассмотрим свойства линейной зависимости и независимости системы векторов.

СВОЙСТВО 1.1. Система векторов, содержащая нуле вой вектор, линейно зависима.

Доказательство. Если в системе векторов один из векторов, например вектор нулевой, то линейная комбинация векторов системы, все коэффициенты которой нулевые, за исключением коэффициента при равна нулевому вектору. Следовательно, такая система векторов линейно зависима.

СВОЙСТВО 1.2. Система векторов линейно зависима, если какая-нибудь ее подсистема линейно зависима.

Доказательство. Пусть - линейно зависимая подсистема системы причем хотя бы один из коэффициентов отличен от нуля. Тогда Следовательно, система векторов линейно зависима.

СЛЕДСТВИЕ. Любая подсистема линейно независимой системы линейно независима.

СВОЙСТВО 1.3. Система векторов

в которой линейно зависима тогда и только тогда, когда хотя бы один из векторов является линейной комбинацией предшествующих векторов.

Доказательство. Пусть система (1) линейно зависима и Тогда существуют скаляры не все равные нулю, такие, что

Обозначим через k наибольшее из чисел удовлетворяющее условию Тогда равенство (2) можно записать в виде

Отметим, что ибо в противном случае следовательно, поскольку . Из (3) следует равенство

Предположим теперь, что вектор есть линейная комбинация предшествующих ему векторов, т. е. Тогда , т. е. подсистема системы (1) линейно зависима. Следовательно, по свойству 1.2, линейно зависима и исходная система (1).

СВОЙСТВО 1.4. Если система векторов линейно независима, а система векторов

линейно зависима, то вектор v линейно выражается через векторы

и притом единственным образом.

Доказательство. По условию система (2) линейно зависима, т. е. существуют скаляры не все равные нулю, такие, что

При этом так как при что противоречит линейной независимости системы (1). Из (3) следует равенство

В силу линейной независимости системы (1) отсюда следует, что

СВОЙСТВО 1.5. Если и

Доказательство. Условие означает что найдутся такие скаляры что

Условие означает, что существуют такие скаляры что

В силу (1) и (2) получаем

ТЕОРЕМА 1.2. Если

то система векторов линейно зависима. Доказательство (проводится индукцией по ).

Задача 1. Выяснить, является ли система векторов линейно независимой. Систему векторов будем задавать матрицей системы, столбцы которой состоят из координат векторов.

Решение. Пусть линейная комбинация равна нулю. Записав это равенство в координатах, получим следующую систему уравнений:

Такая система уравнений называется треугольной. Она имеет единственное решение . Следовательно, векторы линейно независимы.

Задача 2. Выяснить, является ли линейно независимой система векторов.

Решение. Векторы линейно независимы (см. задачу 1). Докажем, что вектор является линейной комбинацией векторов . Коэффициенты разложения по векторам определяются из системы уравнений

Эта система, как треугольная, имеет единственное решение.

Следовательно, система векторов линейно зависима.

Замечание . Матрицы, такого вида, как в задаче 1, называются треугольными , а в задаче 2 – ступенчато-треугольными . Вопрос о линейной зависимости системы векторов легко решается, если матрица, составленная из координат этих векторов, является ступенчато треугольной. Если матрица не имеет специального вида, то с помощью элементарных преобразований строк , сохраняющих линейные соотношения между столбцами, её можно привести к ступенчато-треугольному виду.

Элементарными преобразованиями строк матрицы(ЭПС) называются следующие операции над матрицей:

1) перестановка строк;

2) умножение строки на отличное от нуля число;

3) прибавление к строке другой строки, умноженной на произвольное число.

Задача 3. Найти максимальную линейно независимую подсистему и вычислить ранг системы векторов

Решение. Приведем матрицу системы с помощью ЭПС к ступенчато-треугольному виду. Чтобы объяснить порядок действий, строчку с номером преобразуемой матрицы обозначим символом . В столбце после стрелки указаны действия над строками преобразуемой матрицы, которые надо выполнить для получения строк новой матрицы.

Очевидно, что первые два столбца полученной матрицы линейно независимы, третий столбец является их линейной комбинацией, а четвертый не зависит от двух первых. Векторы называются базисными. Они образуют максимальную линейно независимую подсистему системы , а ранг системы равен трем.



Базис, координаты

Задача 4. Найти базис и координаты векторов в этом базисе на множестве геометрических векторов, координаты которых удовлетворяют условию .

Решение . Множество является плоскостью, проходящей через начало координат. Произвольный базис на плоскости состоит из двух неколлинеарных векторов. Координаты векторов в выбранном базисе определяются решением соответствующей системы линейных уравнений.

Существует и другой способ решения этой задачи, когда найти базис можно по координатам.

Координаты пространства не являются координатами на плоскости , так как они связаны соотношением , то есть не являются независимыми. Независимые переменные и (они называются свободными) однозначно определяют вектор на плоскости и, следовательно, они могут быть выбраны координатами в . Тогда базис состоит из векторов, лежащих в и соответствующих наборам свободных переменных и , то есть .

Задача 5. Найти базис и координаты векторов в этом базисе на множестве всех векторов пространства , у которых нечетные координаты равны между собой.

Решение . Выберем, как и в предыдущей задаче, координаты в пространстве .

Так как , то свободные переменные однозначно определяют вектор из и, следовательно, являются координатами. Соответствующий базис состоит из векторов .

Задача 6. Найти базис и координаты векторов в этом базисе на множестве всех матриц вида , где – произвольные числа.

Решение . Каждая матрица из однозначно представима в виде:

Это соотношение является разложением вектора из по базису с координатами .

Задача 7. Найти размерность и базис линейной оболочки системы векторов

Решение. Преобразуем с помощью ЭПС матрицу из координат векторов системы к ступенчато-треугольному виду.

Столбцы последней матрицы линейно независимы, а столбцы линейно выражаются через них. Следовательно, векторы образуют базис , и .

Замечание . Базис в выбирается неоднозначно. Например, векторы также образуют базис .

Система векторов , называется линейно зависимой , если существуют такие числа , среди которых хотя бы одно отлично от нуля, что выполняется равенство https://pandia.ru/text/78/624/images/image004_77.gif" width="57" height="24 src=">.

Если же это равенство выполняется только в том случае, когда все , то система векторов называется линейно независимой .

Теорема. Система векторов , будет линейно зависимой тогда и только тогда, когда хотя бы один из ее векторов является линейной комбинацией остальных.

Пример 1. Многочлен является линейной комбинацией многочленов https://pandia.ru/text/78/624/images/image010_46.gif" width="88 height=24" height="24">. Многочлены составляют линейно независимую систему, так как многочлен https://pandia.ru/text/78/624/images/image012_44.gif" width="129" height="24">.

Пример 2. Система матриц , , https://pandia.ru/text/78/624/images/image016_37.gif" width="51" height="48 src="> является линейно независимой, так как линейная комбинация равна нулевой матрице только в том случае, когда https://pandia.ru/text/78/624/images/image019_27.gif" width="69" height="21">, , https://pandia.ru/text/78/624/images/image022_26.gif" width="40" height="21"> линейно зависимой.

Решение.

Составим линейную комбинацию данных векторов https://pandia.ru/text/78/624/images/image023_29.gif" width="97" height="24">=0..gif" width="360" height="22">.

Приравнивая одноименные координаты равных векторов, получаем https://pandia.ru/text/78/624/images/image027_24.gif" width="289" height="69">

Окончательно получим

Система имеет единственное тривиальное решение, поэтому линейная комбинация данных векторов равна нулю только в случае, когда все коэффициенты равны нулю. Поэтому данная система векторов линейно независима.

Пример 4. Векторы линейно независимы. Какими будут системы векторов

Решение.

a). Составим линейную комбинацию и приравняем её к нулю

Используя свойства операций с векторами в линейном пространстве, перепишем последнее равенство в виде

Так как векторы линейно независимы, то коэффициенты при должны быть равны нулю, т. е..gif" width="12" height="23 src=">

Полученная система уравнений имеет единственное тривиальное решение .

Так как равенство (*) выполняется только при https://pandia.ru/text/78/624/images/image031_26.gif" width="115 height=20" height="20"> – линейно независимы;

b). Составим равенство https://pandia.ru/text/78/624/images/image039_17.gif" width="265" height="24 src=">(**)

Применяя аналогичные рассуждения, получим

Решая систему уравнений методом Гаусса, получим

Последняя система имеет бесконечное множество решений https://pandia.ru/text/78/624/images/image044_14.gif" width="149" height="24 src=">. Таким образом, существует, ненулевой набор коэффициентов, для которого выполняется равенство (**) . Следовательно, система векторов – линейно зависима.

Пример 5 Система векторов линейно независима, а система векторов линейно зависима..gif" width="80" height="24">.gif" width="149 height=24" height="24">(***)

В равенстве (***) . Действительно, при система была бы линейно зависимой.

Из соотношения (***) получаем или Обозначим .

Задачи для самостоятельного решения (в аудитории)

1. Система, содержащая нулевой вектор, линейно зависима.

2. Система, состоящая из одного вектора а , линейно зависима тогда и только тогда, когда, а=0 .

3. Система, состоящая из двух векторов, линейно зависима тогда и только тогда, когда, векторы пропорциональны (т. е. один из них получается из другого умножением на число).

4. Если к линейно зависимой системе добавить вектор, то получится линейно зависимая система.

5. Если из линейно независимой системы удалить вектор, то полученная система векторов линейна независима.

6. Если система S линейно независима, но становится линейно зависимой при добавлении вектора b , то вектор b линейно выражается через векторы системы S .

c). Система матриц , , в пространстве матриц второго порядка.

10. Пусть система векторов a, b, c векторного пространства линейно независима. Докажите линейную независимость следующих систем векторов:

a). a+ b, b, c.

b). a+ https://pandia.ru/text/78/624/images/image062_13.gif" width="15" height="19">– произвольное число

c). a+ b, a+c, b+c.

11. Пусть a, b, c – три вектора на плоскости, из которых можно сложить треугольник. Будут ли эти векторы линейно зависимы?

12. Даны два вектора a1=(1, 2, 3, 4), a2=(0, 0, 0, 1) . Подобрать ещё два четырёхмерных вектора a3 и a4 так, чтобы система a1, a2, a3, a4 была линейно независимой.

Зададим в (действительном или комплексном) систему из векторов

По определению система (1) линейно независима, если из векторного равенства

где , , ..., - числа (соответственно действительные или комплексные), следует, что

Система векторов (1) называется линейно зависимой, если существуют числа , , ..., , одновременно не равные нулю, для которых выполняется равенство (2). Если для определенности считать, что , то из (2) следует, что

Таким образом, если система из векторов линейно зависима, то один из них есть, как говорят, линейная комбинация остальных, или, как еще говорят, зависит от остальных.

Так как все время будет идти речь о линейной зависимости, то термин линейный будем позволять себе иногда опускать. Будем также говорить зависимые или независимые векторы вместо зависимая или независимая система векторов.

Один вектор тоже образует систему - линейно независимую, если , и зависимую, если .

Если система векторов линейно независима, то любая часть этой системы тем более линейно независима. Иначе нашлась бы нетривиальная система чисел ,…,, для которой выполнялось бы

но тогда для системы , ..., , , которая тоже нетривиальна, имело бы место

Из сказанного следует, что если система векторов линейно зависима то любая пополненная система

обладает тем же свойством. В частности, система векторов, содержащая в себе нулевой вектор, всегда линейно зависима.

Составим матрицу, определяемую векторами системы (1):

Теорема 1. Если ранг , т.е. ранг равен числу векторов, то система (1) линейно независима.

Если же ранг , то система (1) линейно зависима.

Пример 1. Два вектора , в действительном пространстве образуют линейно независимую систему, если определитель

потому что векторное уравнение

эквивалентно двум уравнениям для соответствующих компонент

Но если , то система (5) имеет единственное тривиальное решение

Если же , то уравнениям (5) удовлетворяет некоторая нетривиальная система , т.е. при система векторов , линейно зависима.

Очевидно, сказать, что в действительном пространстве векторы и коллинеарны или линейно зависимы - это все равно. Но тогда сказать, что векторы и не коллинеарны или линейно независимы - это тоже все равно.

Пример 2. Система векторов , , ...., в действительном пространстве всегда линейно зависима. Геометрически это ясно из рис. 33: если произвольный вектор и , - неколлинеарные векторы, то всегда можно указать такие числа , , что

Это показывает, что система , , линейно зависима. Если же и - коллинеарные векторы, то они линейно зависимы. Тем более линейно зависимы , , .

По теореме 1, чтобы исследовать пару векторов , , мы должны записать матрицу из их координат

В данном случае .

а) Если ранг , то теорема утверждает, что векторы , линейно зависимы.

б) Если же ранг , то векторы , линейно независимы.

Это совпадает с приведенными выводами, потому что в случае а) и б).

Тот факт, что три произвольных вектора , , в линейно зависимы, тоже предусмотрен теоремой - ведь ранг

Пример 3. В трехмерном действительном пространстве два вектора

линейно зависимы тогда и только тогда, когда они коллинеарны.

В самом деле, пусть , коллинеарны. Если один из данных векторов нулевой, то они линейно зависимы. Если же и коллинеарны и не нулевые, то

где - некоторое число. Последнее означает, что , линейно зависимы.

Обратно, если , линейно зависимы, то один из них зависит от другого, например

т.е. векторы коллинеарны.

Если в этом случае рассмотреть матрицу

то элементы строк матрицы пропорциональны, и поэтому

т.е. наше утверждение согласуется с теоремой 1.

Пример 4. Рассмотрим теперь три вектора в :

Векторному уравнению

эквивалентна система из трех уравнений

Если , то система (7") имеет единственное тривиальное решение . Но тогда и уравнение (7) имеет единственное тривиальное решение и система векторов , , , линейно независима.

Если , то система (7"), следовательно, и уравнение (7) имеют нетривиальное решение (). Но тогда система векторов (, , ) линейно зависима. Но здесь можно различать детали:

1) Пусть ранг, где

Тогда по крайней мере одна из строк , пусть для определенности первая, имеет хотя бы один элемент, не равный нулю. Рассмотрим матрицу

Она имеет ранг 1, поэтому все порождаемые ею определители второго порядка равны нулю

Но тогда, очевидно, компоненты векторов и пропорциональны.

Аналогично, учитывая, что в матрице

тоже все определители второго порядка равны нулю, получим, что

где - некоторое число. Таким образом, в этом случае векторы , , коллинеарны.

2) Пусть теперь ранг . Тогда одна из матриц, состоящих из двух строк матрицы , имеет ранг 2. Пусть для определенности это есть матрица (см. (8)). На основании примера 3 векторы и , линейно независимы. Но система , , зависима, т. е. для некоторой нетривиальной тройки чисел ()

Здесь , потому что иначе , и в силу независимости системы , было бы . Но тогда равенство (9) можно разрешить относительно :

Таким образом, если , а ранг (см. (8)), то векторы и неколлинеарны, а вектор , принадлежит к плоскости этих векторов.. Существует не равный нулю определитель уравнений системы (2") удовлетворяются найденными числами (см.(11)) и произвольными числами . На основании утверждения 2) §4 (правила решения систем) числа удовлетворяют и остальным уравнениям системы (2"), т. е. числа , (не все равные нулю) удовлетворяют остальным уравнениям системы (2").

Таким образом, векторы линейно зависимы, и теорема доказана и в этом случае.

 

 

Это интересно: