→ Механические свойства металлов и способы их определения. Методы испытания механических свойств металлов Оптические и физические испытания металлов

Механические свойства металлов и способы их определения. Методы испытания механических свойств металлов Оптические и физические испытания металлов

В зависимости от способа приложения нагрузки методы испытаний механических свойств металлов делят на три группы:

статические , когда нагрузка возрастает медленно и плавно (испытания на растяжение, сжатие, изгиб, кручение, срез, твердость);

динамические , когда нагрузка возрастает с большой скоростью, ударно (испытание на удар);

испытания при повторно-переменных нагрузках , когда нагрузка в про­цессе испытания многократно изменяется по величине или по величине и знаку (испытание на усталость).

Необходимость проведения испытания в различных условиях определяется различием в условиях работы деталей машин, инстру­ментов и других металлических изделий.

Испытание на растяжение . Для испытания на растяжение при­меняют цилиндрические или плоские образцы определенной формы и размеров по стандарту. Испытание образцов на растяжение про­водится на разрывных машинах с механическим или гидравличе­ским приводом. Эти машины снабжены специальным приспособле­нием, на котором при испытании (растяжении) автоматически записывается диаграмма растяжения.

Учитывая, что на характер диаграммы растяжения влияет размер образца, диаграмму строят (рис.1) в координатах напряжение σ (в Н/м 2 или кгс/мм 2) - относительное удлинение δ % ). При испытании на растяжение определяют следующие характе­ристики механических свойств: пределы пропорциональности, упру­гости, текучести, прочности, истинного сопротивления разрыву, относительное удлинение и сужение.

Испытание на твердость. Твердостью называется способность металла сопротивляться внедрению в него другого, более твердого тела. Определение твердости является наиболее часто применяе­мым методом испытания металлов. Для определения твердости не требуется изготовления специальных образцов, т. е. испытание проводится без разрушения детали.

Существуют различные методы определения твердости - вдав­ливанием, царапанием, упругой отдачей, а также магнитный метод. Наиболее распространенным является метод вдавливания в металл стального шарика, алмазного конуса или алмазной пирамиды. Для испытания на твердость применяют специальные приборы, несложные по устройству и простые в обращении.

Твердость по Бринеллю. В поверхность испытываемого металла с определенной силой вдавливают стальной закаленный шарик диаметром 10, 5 или 2,5 мм. В результате на поверхности металла получается отпе­чаток (лунка). Диаметр отпечатка изме­ряют специальной лупой с делениями. Число твердости по Бринеллю записывается латинскими буквами НВ, после которых записывается числовой показатель твердости. Например, твердость по НВ 220. Метод Бринелля не рекомендуется применять для металлов твердостью более НВ 450, так как шарик может деформироваться и результат получится неправильным. Нельзя также испытывать тонкие материалы, которые при вдавливании шарика продавли­ваются.

Твердость по Роквеллу — испытание на твердость вдавливанием конуса или шарика в поверхность испытываемого металла. Вдавливают алмазный конус с углом 120° или стальной закаленный шарик диаметром 1,59 мм Испытания шариком применяют при определении твердости мягких материалов, а алмазным конусом – при испытании твердых материалов. Число твердости по Роквеллу записывается латинскими буквами HRC (шкала С), после которых записывается числовое значение твердости. Например, твердость по HRC 230.

Твердость по Виккерсу — испытание на твердость вдавливанием пирамиды. В поверх­ность металла вдавливают четырехгранную алмазную пирамиду. По нагрузке, приходящейся на единицу поверхности отпечатка, определяют число твердости, обозначаемое HV 140.

Испытание на микротвердость . Это испыта­ние применяют при определении твердости микроскопически малых объемов металла, например твердости отдельных структурных составляющих сплавов. Микротвердость определяют на специаль­ном приборе, состоящем из механизма нагружения с алмазным наконечником и металлографического микроскопа. Поверхность образца подготавливают так же, как и для микроисследования (шлифование, полирование, травление). Четырехгранная алмазная пирамида (с углом при вершине 136°, таким же, как и у пирамиды при испытании по Виккерсу) вдавливается в испытываемый материал под очень малой нагрузкой. Твердость определяется величиной Н/м 2 или кгс/мм 2 .

Химические испытания обычно состоят в том, что стандартными методами качественного и количественного химического анализа определяется состав материала и устанавливается наличие или отсутствие нежелательных и легирующих примесей. Они нередко дополняются оценкой стойкости материалов, в частности с покрытиями, к коррозии под действием химических реагентов. При макротравлении поверхность металлических материалов, особенно легированных сталей, подвергают селективному воздействию химических растворов для выявления пористости, сегрегации, линий скольжения, включений, а также гросс-структуры. Присутствие серы и фосфора во многих сплавах удается обнаружить методом контактных отпечатков, при котором поверхность металла прижимается к сенсибилизированной фотобумаге. С помощью специальных химических растворов оценивается подверженность материалов сезонному растрескиванию. Проба на искру позволяет быстро определить тип исследуемой стали.

Методы спектроскопического анализа особенно ценны тем, что позволяют оперативно проводить качественное определение малых количеств примесей, которые невозможно обнаружить другими химическими методами. Такие многоканальные приборы с фотоэлектрической регистрацией, как квантометры, полихроматоры и квантоваки, автоматически анализируют спектр металлического образца, после чего индикаторное устройство указывает содержание каждого присутствующего металла.

Механические методы.

Механические испытания обычно проводят для выяснения поведения материала в определенном напряженном состоянии. Такие испытания дают важную информацию о прочности и пластичности металла. В дополнение к стандартным видам испытаний может применяться специально разработанное оборудование, воспроизводящее те или иные специфические условия эксплуатации изделия. Механические испытания могут проводиться в условиях либо постепенного приложения напряжений (статической нагрузки), либо ударного нагружения (динамической нагрузки).

Виды напряжений.

По характеру действия напряжения разделяются на растягивающие, сжимающие и сдвиговые. Скручивающие моменты вызывают особый вид сдвиговых напряжений, а изгибающие моменты – сочетание растягивающих и сжимающих напряжений (обычно при наличии сдвиговых). Все эти различные виды напряжений могут быть созданы в образце с помощью стандартного оборудования, позволяющего определять предельно допустимые и разрушающие напряжения.

Испытания на растяжение.

Это – один из самых распространенных видов механических испытаний. Тщательно подготовленный образец помещают в захваты мощной машины, которая прикладывает к нему растягивающие усилия. Регистрируется удлинение, соответствующее каждому значению растягивающего напряжения. По этим данным может быть построена диаграмма напряжение – деформация. При малых напряжениях заданное увеличение напряжения вызывает лишь небольшое увеличение деформации, соответствующее упругому поведению металла. Наклон линии напряжение – деформация служит мерой модуля упругости, пока не будет достигнут предел упругости. Выше предела упругости начинается пластическое течение металла; удлинение быстро увеличивается до разрушения материала. Предел прочности при растяжении – это максимальное напряжение, которое металл выдерживает в ходе испытания.

Испытания на ударную вязкость.

Один из самых важных видов динамических испытаний – испытания на ударную вязкость, которые проводятся на маятниковых копрах с образцами, имеющими надрез, или без надреза. По весу маятника, его начальной высоте и высоте подъема после разрушения образца вычисляют соответствующую работу удара (методы Шарпи и Изода).

Испытания на усталость.

Такие испытания имеют целью исследование поведения металла при циклическом приложении нагрузок и определение предела выносливости материала, т.е. напряжения, ниже которого материал не разрушается после заданного числа циклов нагружения. Чаще всего применяется машина для испытания на усталость при изгибе. При этом наружные волокна цилиндрического образца подвергаются действию циклически меняющихся напряжений – то растягивающих, то сжимающих.

Испытания на глубокую вытяжку.

Образец листового металла зажимается между двумя кольцами, и в него вдавливается шаровой пуансон. Глубина вдавливания и время до разрушения являются показателями пластичности материала.

Испытания на ползучесть.

В таких испытаниях оценивается совместное влияние длительного приложения нагрузки и повышенной температуры на пластическое поведение материалов при напряжениях, не превышающих предела текучести, определяемого в испытаниях малой длительности. Надежные результаты могут быть получены лишь на оборудовании, обеспечивающем точный контроль за температурой образца и точное измерение очень малых изменений размеров. Длительность испытаний на ползучесть обычно составляет несколько тысяч часов.

Определение твердости.

Твердость чаще всего измеряют методами Роквелла и Бринелля, при которых мерой твердости служит глубина вдавливания «индентора» (наконечника) определенной формы под действием известной нагрузки. На склероскопе Шора твердость определяется по отскоку бойка с алмазным наконечником, падающего с определенной высоты на поверхность образца. Твердость – очень хороший показатель физического состояния металла. По твердости данного металла зачастую можно с уверенностью судить о его внутренней структуре. Испытания на твердость часто берут на вооружение отделы технического контроля на производствах. В тех случаях, когда одной из операций является термообработка, нередко предусматривается сплошной контроль на твердость всей продукции, выходящей с автоматической линии. Такой контроль качества невозможно осуществить другими описанными выше методами механических испытаний.

Испытания на излом.

В таких испытаниях образец с шейкой разрушают резким ударом, а затем излом исследуют под микроскопом, выявляя поры, включения, волосовины, флокены и сегрегацию. Подобные испытания позволяют приблизительно оценить размер зерна, толщину закаленного слоя, глубину цементации или разуглероживания и другие элементы гросс-структуры в сталях.

Оптические и физические методы.

Микроскопическое исследование.

Металлургический и (в меньшей степени) поляризационный микроскопы часто позволяют надежно судить о качестве материала и его пригодности для рассматриваемого вида применения. При этом удается определить структурные характеристики, в частности размеры и форму зерен, фазовые соотношения, наличие и распределение диспергированных инородных материалов.

Радиографический контроль.

Жесткое рентгеновское или гамма-излучение направляется на испытуемую деталь с одной стороны и регистрируется на фотопленке, расположенной по другую сторону. На полученной теневой рентгено- или гаммаграмме выявляются такие несовершенства, как поры, сегрегация и трещины. Произведя облучение в двух разных направлениях, можно определить точное расположение дефекта. Такой метод часто применяется для контроля качества сварных швов.

Магнитно-порошковый контроль.

Этот метод контроля пригоден лишь для ферромагнитных металлов – железа, никеля, кобальта – и их сплавов. Чаще всего он применяется для сталей: некоторые виды поверхностных и внутренних дефектов удается выявить нанесением магнитного порошка на предварительно намагниченный образец.

Ультразвуковой контроль.

Если в металл послать короткий импульс ультразвука, то он частично отразится от внутреннего дефекта – трещины или включения. Отраженные ультразвуковые сигналы регистрируются приемным преобразователем, усиливаются и представляются на экране электронного осциллографа. По измеренному времени их прихода к поверхности можно вычислить глубину дефекта, от которого отразился сигнал, если известна скорость звука в данном металле. Контроль проводится весьма быстро и зачастую не требует выведения детали из эксплуатации.

Специальные методы.

Существует ряд специализированных методов контроля, имеющих ограниченную применимость. К ним относится, например, метод прослушивания со стетоскопом, основанный на изменении вибрационных характеристик материала при наличии внутренних дефектов. Иногда проводят испытания на циклическую вязкость для определения демпфирующей способности материала, т.е. его способности поглощать вибрации. Она оценивается по работе, превращающейся в теплоту в единице объема материала за один полный цикл обращения напряжения. Инженеру, занимающемуся проектированием строений и машин, подверженных вибрациям, важно знать демпфирующую способность конструкционных материалов.

(прочность, упругость, пластичность, вязкость), как и другие свойства, являются исходными данными при проектировании и создании различных машин, механизмов и сооружений.

Методы определения механических свойств металлов делятся на следующие группы:

· статические, когда нагрузка возрастает медленно и плавно (испытания на растяжение, сжатие, изгиб, кручение, твердость);

· динамические, когда нагрузка возрастает с большой скоростью (испытания на ударный изгиб);

· циклические, когда нагрузка многократно изменяется (испытание на усталость);

· технологические — для оценки поведения металла при обработке давлением (испытания на изгиб, перегиб, выдавливание).

Испытания на растяжение (ГОСТ 1497-84) проводятся на стандартных образцах круглого или прямоугольного сечения. При растяжении под действием плавно возрастающей нагрузки образец деформируется до момента разрыва. Во время испытания образца снимают диаграмму растяжения (рис. 1.36, а ), фиксирующую зависимость между действующей на образец силой Р, и вызванной ею деформацией Δl (Δl — абсолютное удлинение).

Рис. 1.36. Диаграмма растяжения низкоуглеродистой стали (а ) и зависимость между напряжением и относительным удлинением (б )

Вязкость (внутреннее трение) — способность металла поглощать энергию внешних сил при пластической деформации и разрушении (определяется величиной касательной силы, приложенной к единице площади слоя металла, подлежащего сдвигу).

Пластичность — способность твердых тел необратимо деформироваться под действием внешних сил.

При испытании на растяжение определяют:

· σ в — границу прочности, МН/м 2 (кг/мм 2):

0 — начальная площадь сечения образца;

· σ пц — границу пропорциональности, МН/м 2 (кг/мм 2):

где P пц — нагрузка, соответствующая границе пропорциональности;

· σ пр — границу упругости, МН/м 2 (кг/мм 2):

где Р пр — нагрузка, соответствующая границе упругости (при σ пр остаточная деформация соответствует 0,05-0,005 % начальной длины);

· σт — границу текучести, МН/м 2 (кг/мм 2):

где Р т — нагрузка, соответствующая границе текучести, Н;

· δ — относительное удлинение, %:

где l 0 — длина образца до разрыва, м; l 1 — длина образца после разрыва, м;

· ψ — относительное сужение, %:

где F 0 — площадь сечения до разрыва, м 2 ; F — площадь сечения после разрыва, м 2 .

Испытания на твердость

Твердость — это сопротивление материала проникновению в него другого, более твердого тела. Из всех видов механического испытания определение твердости является самым распространенным.


Испытания по Бринеллю (ГОСТ 9012-83) проводятся путем вдавливания в металл стального шарика. В результате на поверхности металла образуется сферический отпечаток (рис. 1.37, а ).

Твердость по Бринеллю определяется по формуле:

— диаметр шарика, м; d — диаметр отпечатка, м.

Чем тверже металл, тем меньше площадь отпечатка.

Диаметр шарика и нагрузку устанавливают в зависимости от исследуемого металла, его твердости и толщины. При испытании стали и чугуна выбирают D = 10 мм и P = 30 кН (3000 кгс), при испытании меди и ее сплавов D = 10 мм и P = 10 кН (1000 кгс), а при испытании очень мягких металлов (алюминия, баббитов и др.) D = 10 мм и P = 2,5 кН (250 кгс). При испытании образцов толщиной менее 6 мм выбирают шарики с меньшим диаметром — 5 и 2,5 мм. На практике пользуются таблицей перевода площади отпечатка в число твердости.

Испытания по Роквеллу (ГОСТ 9013-83). Проводятся путем вдавливания в металл алмазного конуса (α = 120°) или стального шарика (D = 1,588 мм или 1/16", рис. 1.37, б ). Прибор Роквелла имеет три шкалы — В, С и А. Алмазный конус применяют для испытания твердых материалов (шкалы С и А), а шарик — для испытания мягких материалов (шкала В). Конус и шарик вдавливают двумя последовательными нагрузками: предварительной Р 0 и общей Р :

Р = Р 0 + Р 1 ,

0 = 100 Н (10 кгс). Основная нагрузка составляет 900 Н (90 кгс) для шкалы В; 1400 Н (140 кгс) для шкалы С и 500 Н (50 кгс) для шкалы А.

Рис. 1.37. Схема определения твердости: а — по Бринеллю; б — по Рoквеллу; в — по Виккерсу

Твердость по Роквеллу измеряют в условных единицах. За единицу твердости принимают величину, которая соответствует осевому перемещению наконечника на расстояние 0,002 мм.

Твердость по Роквеллу вычисляют следующим способом:

НR = 100 - e (шкалы А и С); НR = 130 - e (шкала В).

Величину e определяют по формуле:

где h — глубина проникновения наконечника в металл под действием общей нагрузки Р (Р =Р 0 + Р 1); h 0 — глубина проникновения наконечника под действием предварительной нагрузки Р 0 .

В зависимости от шкалы твердость по Роквеллу обозначают НRВ, НRС, НRА .

Испытания по Виккерсу (ГОСТ 2999-83). В основе метода — вдавливание в испытываемую поверхность (шлифованную или даже полированную) четырехгранной алмазной пирамиды (α = 136°) (рис. 1.37, в ). Метод используется для определения твердости деталей малой толщины и тонких поверхностных слоев, имеющих высокую твердость.

Твердость по Виккерсу:

— среднее арифметическое двух диагоналей отпечатка, измеренных после снятия нагрузки, м.

Число твердости по Виккерсу определяют по специальным таблицам по диагонали отпечатка d . При измерении твердости применяют нагрузку от 10 до 500 Н.

Микротвердость (ГОСТ 9450-84). Принцип определения микротвердости такой же, как и по Виккерсу, согласно соотношению:

Метод применяется для определения микротвердости изделий мелких размеров и отдельных составляющих сплавов. Прибор для измерения микротвердости — это механизм вдавливания алмазной пирамиды и металлографический микроскоп. Образцы для измерений должны быть подготовлены так же тщательно, как микрошлифы.

Испытание на ударную вязкость

Для испытания на удар изготавливают специальные образцы с надрезом, которые затем разрушают на маятниковом копре (рис. 1.39). Общий запас энергии маятника будет расходоваться на разрушение образца и на подъем маятника после его разрушения. Поэтому если из общего запаса энергии маятника отнять часть, которая тратится на подъем (взлет) после разрушения образца, получим работу разрушения образца:

K = Р(h 1 - h 2)

K = Рl (соs β - соs α), Дж (кг·м),

де P — масса маятника, Н (кг); h 1 — высота подъема центра масс маятника до удара, м; h 2 — высота взлета маятника после удара, м; l — длина маятника, м; α, β — углы подъема маятника соответственно до разрушения образца и после него.

Рис. 1.39. Испытание на ударную вязкость: 1 — маятник; 2 — нож маятника; 3 — опоры

Ударную вязкость, т. е. работу, затраченную на разрушение образца и отнесенную к поперечному сечению образца в месте надреза, определяют по формуле:

МДж/м 2 (кг·м/см 2),

где F — площадь поперечного сечения в месте надреза образца, м 2 (см 2).

Для определения пользуются специальными таблицами, в которых для каждого угла β определена величина работы удара K . При этом F = 0,8 · 10 -4 м 2 .

Для обозначения ударной вязкости добавляют и третью букву, указывающую на вид надреза на образце: U, V, Т . Запись KСU означает ударную вязкость образца с U -образным надрезом, KСV — с V -образным надрезом, а KСТ — с трещиной (рис. 1.40).

Рис. 1.40. Виды надрезов на образцах для испытания на ударную вязкость:
а U -образный надрез (KCU ); б V -образный надрез (KСV ); в — надрез с трещиной (KСТ )

Испытание на усталость (ГОСТ 2860-84). Разрушение металла под действием повторных или знакопеременных напряжений называется усталостью металла . При разрушении металла вследствие усталости на воздухе излом состоит из двух зон: первая зона имеет гладкую притертую поверхность (зона усталости), вторая — зона долома, в хрупких металлах она имеет грубокристаллическое строение, а в вязких — волокнистое.

При испытании на усталость определяют границу усталости (выносливости), т. е. то наибольшее напряжение, которое может выдержать металл (образец) без разрушения заданное число циклов. Самым распространенным методом испытания на усталость является испытание на изгиб при вращении (рис. 1.41).

Рис. 1.41. Схема испытания на изгиб при вращении:
1 — образец; виг — изгибающий момент

Применяют следующие основные виды технологических испытаний (проб).

Проба на изгиб (рис. 1.42) в холодном и горячем состоянии — для определения способности металла выдерживать заданный изгиб; размеры образцов — длина l = 5а + 150 мм, ширина b = 2а (но не менее 10 мм), где а — толщина материала.

Рис. 1.42. Технологическая проба на изгиб: а — образец до испытания; б — загиб до определенного угла; в — загиб до параллельности сторон; г — загиб до соприкосновения сторон

Проба на перегиб предусматривает оценку способности металла выдерживать повторный изгиб и применяется для проволоки и прутков диаметром 0,8—7 мм из полосового и листового материала толщиной до 55 мм. Образцы сгибают попеременно направо и налево на 90° с равномерной — около 60 перегибов в минуту — скоростью до разрушения образца.

Проба на выдавливание (рис. 1.43) — для определения способности металла к холодной штамповке и вытягиванию тонкого листового материала. Состоит в продавливании пуансоном листового материала, зажатого между матрицей и зажимом. Характеристикой пластичности металла является глубина выдавливания ямки, что соответствует появлению первой трещины.

Рис. 1.43. Испытание на выдавливание: 1 — лист; h — мера способности материала к вытяжке

Проба на навивку проволоки диаметром d ≤ 6 мм . Испытание состоит в навивке 5—6 плотно прилегающих по винтовой линии витков на цилиндр заданного диаметра. Выполняется только в холодном состоянии. Проволока после навивки не должна иметь повреждений.

Проба на искру используется при необходимости определения марки стали при отсутствии специального оборудования и маркировки.

Прочностью называется способность металла не поддаваться разрушению под действием внешних нагрузок. Ценность металла как машиностроительного материала наряду с другими свойствами определяется прочностью.

Величина прочности указывает, какая сила необходима, чтобы преодолеть внутреннюю связь между молекулами.

Испытание металлов на прочность при растяжении производится на специальных машинах различной мощности. Эти машины состоят из нагружающего механизма, который создает усилие, производит растяжение испытываемого образца и показывает величину усилия, приложенного к образцу. Механизмы бывают механического и гидравлического действия.

Мощность машин различна и достигает 50 т. На рис. 7, а показано устройство машины, состоящей из станины 2 и зажимов 4, при помощи которых закрепляются испытываемые образцы 3.

Верхний зажим закреплен в станине неподвижно, а нижний при помощи особого механизма при испытании медленно опускается, растягивая образец.




Рис. 7. Испытание металлов на растяжение :

а - прибор для испытания металлов на растяжение; б - образцы для испытания на растяжение: I - круглый, II - плоский

Нагрузка, передаваемая при испытании на образец, может быть определена по положению стрелки прибора на измерительной шкале 1.

Испытание образцов должно всегда проводиться в одинаковых условиях, чтобы полученные результаты можно было сравнивать. Поэтому соответствующими стандартами установлены определенные размеры образцов для испытания.

Стандартными образцами для испытания на растяжение являются образцы круглого и плоского сечений, показанные на рис. 7, б.

Плоские образцы применяют при испытании листов, полосового материала и т. д., а если профиль металла позволяет, то делают круглые образцы.

Пределом прочности (σ b) называется наибольшее напряжение, которое может испытывать материал до его разрушения; предел прочности металла равняется отношению наибольшей нагрузки при испытании образца на разрыв к первоначальной площади поперечного сечения образца, т. е.

σ b = P b /F 0 ,

где Р b - наибольшая нагрузка, предшествующая разрыву образца, кгс;

F 0 - начальная площадь поперечного сечения образца, мм 2 .

В целях безопасной работы машин и сооружений необходимо, чтобы при эксплуатации напряжения в материале не превышали установленного предела пропорциональности, т. е. наибольшего напряжения, при котором не вызываются деформации.

Предел прочности некоторых металлов при испытании на растяжение, кгс/мм 2:

Свинец 1,8

Алюминий 8

Расчеты и испытания на прочность в машиностроении МЕТОДЫ МЕХАНИЧЕСКИХ ИСПЫТАНИЙ МЕТАЛЛОВ

Методы испытаний на усталость

Strength analysis and testing in machine ГОСТ 23026-78

building. Methods of metals mechanical и ГОСТ 2860-65

testing. Methods of fatigue testing в части 6Л и 6.2

МКС 77.040.10 ОКП 00 2500

Постановлением Государственного комитета СССР по стандартам от 30 ноября 1979 г. № 4146 дата введения установлена

Ограничение срока действия снято по протоколу № 2-92 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 2-93)

Настоящий стандарт устанавливает методы испытаний образцов металлов и сплавов на усталость:

при растяжении - сжатии, изгибе и кручении;

при симметричных и асимметричных циклах напряжений или деформаций, изменяющихся по простому периодическому закону с постоянными параметрами;

при наличии и отсутствии концентрации напряжений;

при нормальной, повышенной и пониженной температурах;

при наличии или отсутствии агрессивной среды;

в много- и малоцикловой упругой и упругопластической области.

Термины, определения и обозначения, применяемые в стандарте, - по ГОСТ 23207-78.

Стандарт не устанавливает специальные методы испытаний образцов, используемые при отработке прочности высоконапряженных конструкций.

Разделы 2-4 стандарта и приложения могут быть использованы для испытаний на усталость элементов машин и конструкций.

1. МЕТОДЫ ОТБОРА ОБРАЗЦОВ

1.1. Испытание металлов на усталость проводят на гладких образцах круглого сечения типов I (черт. 1, табл. 1) и II (черт. 2, табл. 2), а также прямоугольного сечения типов III (черт. 3, табл. 3) и IV (черт. 4, табл. 4).

Издание официальное

Перепечатка воспрещена

Издание с Изменением № 1, утвержденным в декабре 1985 г. (ИУС 3-86).

Рабочая часть образца типа I

Таблица 1 мм


Рабочая часть образца типа II

G- 2

Таблица 2 мм

Рабочая часть образца типа IV


Таблица 4 мм

1.2. Чувствительность металла к концентрации напряжений и влиянию абсолютных размеров определяют на образцах типов:

V - с V-образной кольцевой выточкой (черт. 5, табл. 5-8);

Рабочая часть образца типа У


Таблица 5

При изгибе

Таблица 6

При растяжении-сжатии

Таблица 7

При кручении

Таблица 8

При растяжении-сжатии

кручении

VI - с симметричными боковыми надрезами V-образного профиля (черт. 6, табл. 9);

Рабочая часть образца типа VI


Таблица 9

VIII - с кольцевой выточкой кругового профиля (черт. 8, табл. 11); Рабочая часть образца типа VIII


При растя-

кручении

IX - с двумя симметрично расположенными отверстиями (черт. 9, табл. 12);

Рабочая часть образца типа IX

X - с симметричными боковыми надрезами V-образного профиля (черт. 10, табл. 13).

Рабочая часть образца типа X

Размеры образцов выбирают таким образом, чтобы параметр подобия усталостного разрушения

(L - периметр рабочего сечения образца или его часть, прилегающая к зоне повышенной напряженности; G - относительный градиент первого главного напряжения).

При изгибе с вращением, кручении и растяжении - сжатии образцов типов I, II, V, VIII

L ж" d,

при изгибе в одной плоскости образцов типов III, IV, VI, а также при растяжении - сжатии образцов типа VI L = 2Ь;

при растяжении - сжатии образцов типов III, IV, VII, IX, X L = 2h.

1.3. Для испытания на малоцикловую усталость применяют образцы типов II и IV, если отсутствует опасность продольного изгиба.

Допускается применять образцы типов I и III.

1.4. Рабочая часть образцов должна быть изготовлена по точности не ниже 7-го квалитета ГОСТ 25347-82.

1.5. Параметр шероховатости поверхности рабочей части образцов Ra должен быть 0,32- 0,16 мкм по ГОСТ 2789-73.

Поверхность не должна иметь следов коррозии, окалины, литейных корок и цветов побежалости ит. п., если это не предусмотрено задачами исследования.

1.6. Расстояние между захватами испытательной машины выбирают так, чтобы исключить продольный изгиб образца и влияние усилий в захватах на напряженность в его рабочей части.

1.7. Вырезка заготовок, маркирование и изготовление образцов не должны оказывать существенного влияния на усталостные свойства исходного материала. Нагрев образца при изготовлении не должен вызывать структурных изменений и физико-химических превращений в металле; припуски на обработку, параметры режима и последовательность обработки должны сводить к минимуму наклеп и исключать местный перегрев образцов при шлифовании, а также трещины и другие дефекты. Снятие последней стружки с рабочей части и головок образцов проводят с одной установки образца; заусенцы на боковых гранях образцов и кромках надрезов должны быть удалены. Заготовки вырезают в местах с определенной ориентацией по отношению к макроструктуре и напряженному состоянию изделий.

1.8. В пределах намеченной серии испытаний технология изготовления образцов из однотипных металлов должна быть одинаковой.

1.9. Измерение размеров рабочей части изготовленных образцов до испытаний не должно вызывать повреждения ее поверхности.

1.10. Рабочую часть образца измеряют с погрешностью не более 0,01 мм.

2.1. Машины для испытаний на усталость должны обеспечивать нагружение образцов по одной или нескольким схемам, приведенным на черт. 11-16. Машины для испытаний на усталость, обеспечивающие также проведение статистических испытаний на разрыв, должны соответствовать требованиям ГОСТ 1497-84.

2. АППАРАТУРА

Чистый изгиб при вращении образцов типов I, II, V, VIII

Поперечный изгиб при вращении образцов типов I, II, V, VHI при консольном нагружении

Чистый изгиб в одной плоскости образцов типов I-VIII

Рабочее сечение образца



Поперечный изгиб в одной Повторно-переменное растяжение

плоскости образцов типов I-VIII сжатие образцов типов I-X

при консольном нагружении

Рабочее сечение

| Образец |

Черт. 14 Черт. 15


Повторно-переменное кручение образцов типов I, II, У, VIII

2.2. Суммарная погрешность нагружения в процессе испытания образцов зависит от типа машин и частоты нагружения и не должна превышать в интервале 0,2-1,0 каждого диапазона нагружения в процентах измеряемой величины:

± 2 % - при /< 0,5 Гц;

± 3 % - при 0,5

± 5 % - при/> 50 Гц.

При испытании на гидропульсационных и резонансных машинах без тензометрического силоизмерения в интервале 0-0,2 каждого диапазона нагружения погрешность измерения нагрузки не должна превышать ± 5 % задаваемых напряжений.

2.3. Погрешность измерений, поддержания и записи деформаций при малоцикловых испытаниях не должна превышать ± 3 % измеряемой величины в интервале 0,2-1,0 каждого диапазона нагружения.

2.4. Абсолютная погрешность измерения, поддержания и регистрации нагрузок и деформаций в интервале 0-0,2 каждого диапазона не должна превышать абсолютных погрешностей в начале этого диапазона нагружения.

2.5. Нагрузки (при мягком нагружении) или деформации (при жестком нагружении) должны соответствовать 0,2-0,8 применяемого диапазона измерений.

2.6. При испытании на малоцикловое растяжение или сжатие и растяжение - сжатие дополнительные деформации изгиба образца от несоосности нагружения не должны превышать 5 % деформаций растяжения или сжатия.

2.7. При испытаниях на малоцикловую усталость должно быть обеспечено непрерывное измерение, а также непрерывная или периодическая регистрация процесса деформирования рабочей части образца.

2.8. Допускается калибровка испытательного оборудования при статических режимах (в том числе и на несоосность нагружения) с оценкой динамической составляющей погрешности расчетным или косвенным способами.

3. ПРОВЕДЕНИЕ ИСПЫТАНИЙ

3.1. При испытании образцов допускается мягкое и жесткое нагружение.

3.2. В пределах намеченной серии испытаний все образцы нагружают одним способом и испытывают на однотипных машинах.

3.3. Испытания образцов проводят непрерывно до образования трещины заданного размера, полного разрушения или до базового числа циклов.

Допускаются перерывы в испытаниях с учетом условий их проведения и обязательной оценкой влияния перерывов на результаты испытаний.

(Измененная редакция, Изм. № 1).

3.4. В процессе испытания образцов контролируют стабильность задаваемых нагрузок (деформаций).

3.5. Испытание серии одинаковых образцов при асимметричных циклах проводят:

либо при одинаковых для всех образцов средних напряжениях (деформациях) цикла;

либо при одинаковом для всех образцов коэффициенте асимметрии цикла.

3.6. Для построения кривой распределения долговечности и оценки среднего значения и среднеквадратического отклонения логарифма долговечности на заданном уровне напряжений испытывают серию объемом не менее 10 одинаковых образцов до полного разрушения или образования макротрещин.

3.7. Испытания на многоцикловую усталость

3.7.1. Основными критериями разрушения при определении пределов выносливости и построении кривых усталости являются полное разрушение или появление макротрещин заданного размера.

3.7.2. Для построения кривой усталости и определения предела выносливости, соответствующего вероятности разрушения 50 %, испытывают не менее 15 одинаковых образцов.

В интервале напряжений 0,95-1,05 от предела выносливости, соответствующего вероятности разрушения 50 %, должны быть испытаны не менее трех образцов, при этом не менее половины из них не должны разрушаться до базы испытаний.

3.7.3. База испытаний для определения пределов выносливости принимается:

10 10 6 циклов - для металлов и сплавов, имеющих практически горизонтальный участок на кривой усталости;

100 10 6 циклов - для легких сплавов и других металлов и сплавов, ординаты кривых усталости которых по всей длине непрерывно уменьшаются с ростом числа циклов.

Для сравнительных испытаний база для определения пределов выносливости соответственно принимается 3 10^ и 10 10^ циклов.

3.7.4. Для построения семейства кривых усталости по параметру вероятности разрушения, построения кривой распределения предела выносливости, оценки среднего значения и среднеквадратического отклонения предела выносливости испытывают серии объемом не менее 10 одинаковых образцов, на каждом из 4-6 уровней напряжения.

3.7.5. От 10 до 300 Гц частота циклов не регламентируется, если испытания проводят в обычных атмосферных условиях (по ГОСТ 15150-69) и если температура рабочей части образца при испытаниях не выше 50 °С.

Для образцов из легкоплавких и других сплавов, обнаруживающих изменения механических свойств до температуры 50 °С, допускаемую температуру испытания устанавливают особо.

3.8. Испытания на малоцикловую усталость (при долговечности до 5 1(И циклов*)

3.8.1. Основным видом нагружения при испытаниях является растяжение - сжатие.

3.8.2. Верхний уровень частот испытаний ограничивается значениями, исключающими само-разогрев образца свыше 50 °С для легких сплавов и свыше 100 °С для сталей.

Во всех случаях частоту циклов указывают при представлении результатов испытаний.

Для регистрации диаграмм деформирования допускается в процессе испытаний переход на более низкие частоты, соответствующие требуемой разрешающей способности и точности приборов измерения и регистрации циклических напряжений и деформаций.

3.8.3 При испытании на растяжение - сжатие образцов типов II и IV измерение деформаций следует проводить в продольном направлении.

При испытании образцов типов I и III допускается измерять деформации в поперечном направлении.

П римечание. Для приближенного пересчета поперечной деформации в продольную используют формулу

Е прод - ^ (е у) попер ^ (Е р) попер’

где (Еу) попер - упругая составляющая поперечной деформации;

(Ер) попер - пластическая составляющая поперечной деформации.

3.9. Испытания при повышенной и пониженной температурах

3.9.1. Испытания при повышенной и пониженной температурах проводят при тех же видах деформации и тех же образцах, что и при нормальной температуре.

* Число циклов 5 ■ 10 4 является условной границей мало- и многоцикловой усталости. Это значение для пластичных сталей и сплавов характеризует среднее число циклов для зоны перехода от упругопластического к упругому циклическому деформированию. Для высокопластичных сплавов переходная зона смещается в сторону больших долговечностей, для хрупких - в сторону меньших.

3.9.3. Температуру испытания образцов контролируют по данным динамической тарировки температурного перепада между образцом и печным пространством. Температурную тарировку проводят с учетом влияния длительности испытания. При тарировке термопары закрепляют на образце.

3.9.4. Термопары поверяют как до испытания, так и после него по ГОСТ 8.338-2002. При испытании на базах более 10 7 циклов производят, кроме того, промежуточные поверки термопар.

3.9.5. Неравномерность распределения температуры по длине рабочей части при испытании гладких образцов типов II и IV не должна превышать 1 % на 10 мм заданной температуры испытания. При испытании гладких образцов типов I, III и образцов с концентраторами напряжений неравномерность распределения температуры регламентируется на расстоянии ± 5 мм от минимального сечения образца. Отклонение от заданной температуры не должно превышать 2 %.

3.9.6. В процессе испытания допускаемые отклонения температуры на рабочей части образца в °С не должны выходить за пределы:

до 600 включ..........±6;

св. 601 до 900 »............±8;

» 901 » 1200 »............±12.

3.9.7. Нагружение образцов проводят после установившегося теплового режима системы «образец-печь» при достижении заданной температуры образца.

3.9.8. Базу испытаний принимают в соответствии с п. 3.7.3 настоящего стандарта.

3.9.9. Для сопоставимости результатов испытания данной серии образцов проводят при одинаковой частоте и базе, если целью испытаний не является исследование влияния частоты нагружения. В протоколах испытания указывают не только число пройденных циклов, но и полное время испытания каждого образца.

3.10. Испытания в условиях агрессивной среды

3.10.1. Испытания в условиях агрессивной среды проводят при тех же видах деформации и на тех же образцах, что и при отсутствии агрессивной среды. Допускается одновременное испытание группы образцов с регистрацией момента разрушения каждого.

3.10.2. Образец должен непрерывно находиться в газовой или жидкостной агрессивной среде.

3.10.3. При испытаниях в агрессивной среде должна быть обеспечена стабильность параметров агрессивной среды и ее взаимодействия с поверхностью образца. Требования к периодичности контроля состава агрессивной среды определяются составом среды и задачами исследования.

3.10.4. Для сопоставимости результатов испытания данной серии образцов проводят при одинаковой частоте и базе, если целью испытаний не является исследование влияния частоты нагружения.

3.9-3.9.9,3.10-3.10.4. (Введены дополнительно, Изм. № 1).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. По результатам испытаний на усталость проводят:

построение кривой усталости и определение предела выносливости, соответствующих вероятности разрушения 50 %;

построение диаграмм предельных напряжений и предельных амплитуд;

построение кривой усталости в малоцикловой области;

построение диаграмм упругопластического деформирования и определение их параметров;

построение кривых усталости по параметру вероятности разрушения;

определение предела выносливости для заданного уровня вероятности разрушения;

определение среднего значения и среднеквадратического отклонения логарифма долговечности на заданном уровне напряжений или деформаций;

определение среднего значения и среднеквадратического отклонения предела выносливости.

Указанные характеристики сопротивления усталости металлов определяют для различных стадий развития макротрещин и (или) полного разрушения.

4.2. Обработка результатов испытаний на многоцикловую усталость

4.2.1. Исходные данные и результаты каждого испытания образца фиксируют в протоколе испытания (приложения 1 и 2), а результаты испытания серии одинаковых образцов - в сводном протоколе испытания (приложения 3 и 4).

4.2.2. Кривые усталости строят в полулогарифмических координатах (o max ; lgN или о а; lg/V) или двойных логарифмических координатах (lg o max ; lg/V или lg о а; lg/V).

4.2.3. Кривые усталости при асимметричных циклах строят для серии одинаковых образцов, испытанных при одинаковых средних напряжениях или при одинаковых коэффициентах асимметрии.

4.2.4. Кривые усталости по результатам испытаний ограниченного объема образцов (п. 3.7.2) строят методом графического интерполирования экспериментальных результатов или по способу наименьших квадратов.

4.2.5. Для построения кривых распределения долговечности и пределов выносливости, оценки средних значений и среднеквадратических отклонений, а также построения семейства кривых усталости по параметру вероятности разрушения результаты испытаний подвергают статистической обработке (приложения 5-7).

4.2.6. Диаграммы предельных напряжений и предельных амплитуд строят с помощью семейства кривых усталости, полученных по результатам испытания не менее трех-четырех серий одинаковых образцов при разных для каждой серии средних напряжениях или коэффициентах асимметрии цикла напряжений.

4.3. Обработка результатов испытаний на малоцикловую усталость

4.3.1. Обработку результатов проводят, как указано в п. 4.2.4.

4.3.2. Исходные данные и результаты испытаний каждого образца фиксируют в протоколе испытания, а результаты испытания серии одинаковых образцов - в сводном протоколе испытания (приложения 8 и 9).

4.3.3. По результатам испытаний образцов при жестком нагружении строят кривые усталости в двойных логарифмических координатах (черт. 17):

амплитуда полной деформации Е а - число циклов до образования трещины N T или до разрушения N;

амплитуда пластической деформации г ра - число циклов, соответствующее половине числа циклов до образования трещины N T или до разрушения N.

Пр имечания:

1. Амплитуду пластической деформации Е ра определяют как половину ширины петли упругопластического гистерезиса г р или как разность между задаваемой амплитудой полной деформации и амплитудой упругой деформации, определяемой по измеренной нагрузке, соответствующему ей напряжению и модулю упругости материала.

2. Амплитуду пластической деформации Е ра при числе циклов, соответствующем половине числа циклов, до образования трещины или до разрушения определяют интерполяцией значений амплитуд при предварительно выбранных числах циклов, близких к ожидаемым.

Кривые усталости при жестком нагружении Кривая усталости при мягком нагружении


Че Р т - 17 Черт. 18

4.3.4. По результатам испытаний при мягком нагружении строят:

кривую усталости в полулогарифмических или двойных логарифмических координатах: амплитуда напряжений о а - число циклов до образования трещины N T или до разрушения N (черт. 18);

зависимость амплитуды пластических деформаций (половина ширины петли гистерезиса) г ра от числа полуциклов нагружения К по параметру амплитуды напряжения при выбранном коэффициенте асимметрии цикла напряжений (черт. 19).

Зависимость амплитуды пластических деформаций от числа полуциклов нагружения


а - для циклически разупрочняющегося материала; б для циклически стабилизирующегося материала; в - для циклически упрочняющегося материала

ПРОТОКОЛ

испытания образца (приложение к сводному протоколу №__)

Назначение испытания_

Машина: тип_, №_

Напряжения цикла:

максимальное_, среднее_, амплитудное_

Нагрузки (число делений по шкале нагрузок):

максимальная_, средняя_, амплитудная_

Показания приборов, регистрирующих аксиальность нагрузки или биение образца:

в начале испытания_

в конце испытания_

Число пройденных циклов_

Частота нагружения_

Критерий разрушения_

Испытания проводил _

Начальник лаборатории _

испытания образца (приложение к сводному протоколу №_)

Назначение испытания_

Образец: шифр_, поперечные размеры_

Машина: тип_, №_

Деформация цикла:

максимальная_, средняя_, амплитудная _

Число делений по индикатору деформации: максимальное_

среднее_, амплитудное_

Показания приборов, регистрирующих аксиальность нагрузки:_

прибор № 1_, прибор № 2_, прибор № 3

Показания счетчика (дата и время):

в начале испытания_

в конце испытания_

Число пройденных циклов_

Частота нагружения_

Критерий разрушения_

Испытания проводил

Начальник лаборатории

Цель испытаний___

Материал:

марка и состояние_

направление волокна_

Условия испытаний:

вид нагружения_

база испытаний__

частота нагружения_

Критерий разрушения_

Тип образцов и номинальные размеры их поперечного сечения

Состояние поверхности_

Испытательная машина:

Дата испытаний:

начало испытаний первого образца_, конец испытаний

последнего образца_

Начальник лаборатории

Цель испытаний___

Материал:

марка и состояние_

направление волокна_

тип заготовки (при сложной форме прилагается план вырезки образцов)

Условия испытаний:

вид деформаций_

база испытаний___

частота нагружения_

Критерии разрушения_

тип образцов и номинальные размеры поперечного сечения_

состояние поверхности_

Испытательная машина:

Дата испытаний:

начало испытаний первого образца_, конец испытаний последнего образца

Ответственный за испытание данной серии образцов

Начальник лаборатории

ПОСТРОЕНИЕ КРИВОЙ РАСПРЕДЕЛЕНИЯ ДОЛГОВЕЧНОСТИ И ОЦЕНКА СРЕДНЕГО ЗНАЧЕНИЯ И СРЕДНЕКВАДРАТИЧЕСКОГО ОТКЛОНЕНИЯ ЛОГАРИФМА ДОЛГОВЕЧНОСТИ

Результаты испытаний серии из п образцов при постоянном уровне напряжения располагают в вариационный ряд в порядке возрастания долговечности

N l

Подобные ряды для образцов из алюминиевого сплава марки В95, испытанных при консольном изгибе с вращением до полного разрушения при шести уровнях напряжения в качестве примера, приведены в табл. 1.

Кривые распределения долговечности (P-N) строят на вероятностной бумаге, соответствующей логарифмически нормальному или другому закону распределения. По оси абсцисс откладывают значения долговечности образцов N, а по оси ординат - значения вероятности разрушения образцов (накопленные частоты), вычисляемые по формуле

р i - 0,5 п ’

где i - номер образца в вариационном ряду; п - число испытанных образцов.

Если на рассматриваемом уровне напряжения разрушились не все образцы серии, то строят только нижнюю часть кривой распределения до базовой долговечности.

На чертеже на логарифмически нормальной вероятностной бумаге приведено семейство кривых распределения P-N, построенное по данным табл. 1.

Таблица 1

Вариационные ряды числа циклов до разрушения образцов из сплава марки Б95

при о тах, кгс/мм 2 (МПа)

* Образцы не разрушились.

Кривые распределения долговечности образцов из сплава марки В95


10*2 3 8 6810 s 2 38 6810 е 2 38 6810 9 2 3 8 6810 е N

1 - а тах = 33 кгс/мм 2 (330 МПа); 2- а тах = 28,5 кгс/мм 2 (285 МПа); 3- а тах = 25,4 кгс/мм 2 (254 МПа); 4- а тах = 22,8 кгс/мм 2 (228 МПа); 5- а тах = 21 кгс/мм 2 (210 МПа); 6- а тах = 19 кгс/мм 2 (190 МПа)

Оценку среднего значения а и среднеквадратического отклонения о логарифма долговечности проводят для уровней напряжения, на которых разрушались все образцы серии. Выборочное среднее значение lg N и выборочное среднеквадратическое отклонение логарифма долговечности образцов (S lg д,) вычисляют по формулам:


В табл. 2 в качестве примера приведено вычисление lg N и 5j g д, для образцов из сплава марки В95, испытанных при напряжении о шах = 28,5 кгс/мм 2 (285 МПа) (см. табл. 1).

Таблица 2

X (lg^) 2 = 526,70.

526,70 - ^ ■ 10524,75

Объем серии образцов n вычисляют по формуле

n>^-Z\_o-А 2 2

где у - коэффициент вариации величины х = lg/V;

Д а и Д а - предельные относительные ошибки для доверительной вероятности Р - 1- а при оценке среднего значения и среднего квадратического отклонения величины х = lg/V соответственно; а - вероятность ошибки первого рода;

Z | _ и - квантиль нормированного нормального распределения, соответствующая вероятность Р = 1- тг 2 2 (значения наиболее часто используемых квантилей приведены в табл. 3).

Значения ошибок выбирают в пределах Д а = 0,02-0,10 и Д а = 0,1-0,5, вероятность ошибки первого рода а принимают 0,05-0,1.

Таблица 3

ПОСТРОЕНИЕ СЕМЕЙСТВА КРИВЫХ УСТАЛОСТИ ПО ПАРАМЕТРУ ВЕРОЯТНОСТИ РАЗРУШЕНИЯ

Для построения семейства кривых усталости испытания целесообразно проводить на четырех-шести уровнях напряжения.

Минимальный уровень следует выбирать так, чтобы до базового числа циклов разрушались примерно от 5 % до 15 % образцов, испытуемых на этом уровне напряжения. На следующем (в порядке возрастания) уровне напряжения должно разрушиться 40 %-60 % образцов.

Максимальный уровень напряжения выбирают с учетом требования на протяженность левой ветви кривой усталости (N > 5 ■ 10 4 циклов). Оставшиеся уровни распределяют равномерно между максимальным и минимальным уровнями напряжений.

Результаты испытаний для каждого уровня напряжения располагают в вариационные ряды, на основании которых строят семейство кривых распределения долговечности в координатах Р-N (приложение 7).

Задают значения вероятности разрушения и на основании кривых распределения долговечности строят семейство кривых усталости равной вероятности.

На чертеже представлены кривые усталости образцов из сплава марки В95 для вероятности разрушения Р = 0,5; 0,10; 0,01, построенные на основании графиков.

Минимально необходимое число образцов для построения семейства кривых усталости определяют в зависимости от доверительной вероятности P l = 1- а и предельной относительной ошибки А р при оценке предела выносливости для заданной вероятности Р на основании формулы

■ Zj-a ■ ф(р) ,

где у - коэффициент вариации предела выносливости;

Z- квантиль нормированного нормального распределения;

Ф (р) - функция, зависящая от вероятности, для которой определяется предел выносливости. Значения этой функции, найденные методом статистического моделирования, приведены в таблице.

Кривые усталости образцов из сплава марки В95


ПОСТРОЕНИЕ КРИВОЙ РАСПРЕДЕЛЕНИЯ ПРЕДЕЛА ВЫНОСЛИВОСТИ И ОЦЕНКА ЕГО СРЕДНЕГО ЗНАЧЕНИЯ И СРЕДНЕКВАДРАТИЧЕСКОГО ОТКЛОНЕНИЯ

Для построения кривой распределения предела выносливости образцы испытывают на шести уровнях напряжения.

Самый высокий уровень напряжения выбирают с таким расчетом, чтобы все образцы при этом напряжении разрушались до базового числа циклов. Величину максимального напряжения принимают (1,3- 1,5) от значения предела выносливости для Р- 0,5. Остальные пять уровней распределяются таким образом, чтобы на среднем уровне разрушалось около 50 %, на двух высоких - 70 %-80 % и не менее 90 % и на двух низких - не более 10 % и 20 %-30 % соответственно.

Значение напряжений в соответствии с заданной вероятностью разрушения выбирают на основании анализа имеющихся данных для аналогичных материалов или с помощью предварительных испытаний.

После испытаний результаты представляют в виде вариационных рядов, на основании которых строят кривые распределения долговечности по методике, изложенной в приложении 5.

На основании кривых распределения долговечности строят семейство кривых усталости для ряда вероятностей разрушения (приложение 8). Для этого целесообразно использовать вероятности 0,01, 0,10, 0,30, 0,50, 0,70, 0,90 и 0,99.

По этим кривым усталости определяют соответствующие значения предела выносливости. Предел выносливости для вероятности разрушения Р = 0,01 находят методом графической экстраполяции соответствующей кривой усталости до базового числа циклов.

Найденные значения пределов выносливости наносят на график с координатами: вероятность разрушения в масштабе, соответствующем нормальному распределению, - предел выносливости в кгс/мм 2 (МПа). Через построенные точки проводят линию, представляющую собой графическую оценку функции распределения предела выносливости. Разбивают размах варьирования предела выносливости на 8-12 интервалов, определяют средние значения предела выносливости и его среднеквадратическое отклонение по формулам:

X АР г ст й. ;

S c R =\/Х АР Г (°й.-°й) 2 >

где a R - среднее значение предела выносливости;

S„ - среднеквадратическое отклонение предела выносливости;

Стд - значение предела выносливости в середине интервала;

I - число интервалов;

A Pi - приращение вероятности внутри одного интервала.

В качестве примера по результатам испытаний на консольный изгиб с вращением 100 образцов из алюминиевого сплава марки АВ, представленных в табл. 1, строят функцию распределения пределов выносливости для базы 5 ■ 10 7 циклов и определяют среднее значение и среднеквадратическое отклонение.

На основании вариационных рядов (табл. 1) строят кривые распределения долговечности (черт. 1).

Значения долговечности образцов из сплава марки АВ

Таблица 1

при о тах, кгс/мм 2 (МПа)

* Образцы не разрушились.

Производя горизонтальные разрезы кривых распределения долговечности (черт. 1) для уровней вероятности Р=0,01, 0,10, 0,30, 0,50, 0,70, 0,90, 0,99 (или 1,10, 30, 50, 70, 90, 99 %), находят соответствующие долговечности при заданных значениях напряжений, на основании которых строят кривые усталости по параметру вероятности разрушения (черт. 2).

Кривые распределения долговечности образцов из сплава марки АВ


1 - Ящ, = 16,5 кгс/мм 2 (165 МПа); 2 - = 13,5 кгс/мм 2 (135 МПа);

3- а тах = 12,5 кгс/мм 2 (125 МПа); 4- а тах = 12,0 кгс/мм 2 (120 МПа); 5- Ящщ = 11,5 кгс/мм 2 (115 МПа); 6- = 11,0 кгс/мм 2 (110 МПа)

Кривые усталости для образцов из сплава марки АВ для различных вероятностей разрушения


1 - Р = 1 %; 2- Р = 10 %; 3-Р= 30 %; 4-Р= 50 %; 5-Р= 70 %; 6-Р= 90 %; 7- Р= 99 %

С графиков (черт. 2) снимают значения пределов выносливости для базы 5 ■ 10 7 циклов. Значения пределов выносливости приведены в табл. 2.

По результатам, приведенным в табл. 2, строят кривую распределения выносливости (черт. 3).

Таблица 2

Значения пределов ограниченной выносливости образцов из сплава марки АВ (база 5 - 10 7 циклов)

Кривая распределения предела ограниченной выносливости образцов из сплава марки АВ (база 5 - 10 7 циклов)


Для определения среднего значения предела выносливости и его среднеквадратического отклонения размах варьирования предела выносливости делят на 10 интервалов по 0,5 кгс/мм 2 (5 МПа). Вычисление указанных характеристик в соответствии с приведенными формулами представлено в табл. 3.

Необходимый объем усталостных испытаний для построения кривой распределения предела выносливости определяют по формуле приложения 6.

Таблица 3

Вычисление среднего значения и среднеквадратического отклонения предела ограниченной выносливости образцов из сплава марки АВ

Границы интервала,

Середина интервала

Значение вероятностей

(4_l) ,■ ■ О.!

[(ч_1> ,■ - 4_ll 2

(а /, кгс/мм 2 (МПа)

на границах интервала

12,106 кгс/мм 2 (121,06 МПа); ^ Д P i [(ст_ 1) г - - о_ 1 ] 2 = 0,851;

S„ = ^Гp5Г = 0,922 кгс/мм 2 (9,22 МПа)

ПРОТОКОЛ №

испытания образца (приложение к сводному протоколу №

Назначение испытания_

Образец: шифр

материал_

твердость _

Машина: тип

Напряжения цикла:

максимальное_

Деформации цикла:

максимальная_

средняя _

Показания счетчика (дата и время):

в начале испытания_

в конце испытания_

поперечные размеры

Термообработка_

Микротвердость_

Масштаб регистрации: деформации (мм/%) нагрузки (мм/МН)_

минимальное

амплитудное

минимальная

амплитудная

Число пройденных циклов до образования микротрещины длиной

Число пройденных циклов до разрушения Частота нагружения_

Показания счетчика

в начале смены

в конце смены

Число циклов (время), пройденное образцом за смену

Подпись и дата

сдавшего смену

принявшего смену

Примечание

Испытания проводил_

Начальник лаборатории

СВОДНЫЙ ПРОТОКОЛ №_

Цель испытаний___

Материал:

марка и состояние_

направление волокна_

тип заготовки (при сложной форме прилагается план вырезки образцов)

Механические характеристики_

Условия испытаний:

тип нагружения_

вид нагружения_

температура испытания_

частота нагружения_

тип образца и номинальные размеры поперечного сечения

состояние поверхности_

Испытательная машина:

Дата испытаний:

начало испытаний первого образца_

конец испытаний последнего образца

Ответственный за испытание данной серии образцов

Начальник лаборатории

 

 

Это интересно: