→ Масса в классической механике. Реферат: Механика Ньютона - основа классического описания природы

Масса в классической механике. Реферат: Механика Ньютона - основа классического описания природы

См. также: Портал:Физика

Класси́ческая меха́ника - вид механики (раздела физики , изучающего законы изменения положений тел в пространстве со временем и причины, это вызывающие), основанный на законах Ньютона и принципе относительности Галилея . Поэтому её часто называют «Ньютоновской механикой ».

Классическая механика подразделяется на:

  • статику (которая рассматривает равновесие тел)
  • кинематику (которая изучает геометрическое свойство движения без рассмотрения его причин)
  • динамику (которая рассматривает движение тел).

Существует несколько эквивалентных способов формального математического описания классической механики:

  • Лагранжев формализм
  • Гамильтонов формализм

Классическая механика даёт очень точные результаты, если её применение ограничено телами, скорости которых много меньше скорости света , а размеры значительно превышают размеры атомов и молекул . Обобщением классической механики на тела, двигающиеся с произвольной скоростью, является релятивистская механика , а на тела, размеры которых сравнимы с атомными - квантовая механика . Квантовая теория поля рассматривает квантовые релятивистские эффекты.

Тем не менее, классическая механика сохраняет своё значение, поскольку:

  1. она намного проще в понимании и использовании, чем остальные теории
  2. в обширном диапазоне она достаточно хорошо описывает реальность.

Классическую механику можно использовать для описания движения таких объектов, как волчок и бейсбольный мяч, многих астрономических объектов (таких, как планеты и галактики), и иногда даже многих микроскопических объектов, таких как молекулы .

Классическая механика является самосогласованной теорией, то есть в её рамках не существует утверждений, противоречащих друг другу. Однако, её объединение с другими классическими теориями, например классической электродинамикой и термодинамикой приводит к появлению неразрешимых противоречий. В частности, классическая электродинамика предсказывает, что скорость света постоянна для всех наблюдателей, что несовместимо с классической механикой. В начале XX века это привело к необходимости создания специальной теории относительности . При рассмотрении совместно с термодинамикой, классическая механика приводит к парадоксу Гиббса , в котором невозможно точно определить величину энтропии , и к ультрафиолетовой катастрофе , в которой абсолютно чёрное тело должно излучать бесконечное количество энергии. Попытки разрешить эти проблемы привели к возникновению и развитию квантовой механики.

Основные понятия

Классическая механика оперирует несколькими основными понятиями и моделями. Среди них следует выделить:

Основные законы

Принцип относительности Галилея

Основным принципом, на котором базируется классическая механика является принцип относительности, сформулированный на основе эмпирических наблюдений Г. Галилеем . Согласно этому принципу существует бесконечно много систем отсчёта, в которых свободное тело покоится или движется с постоянной по модулю и направлению скоростью. Эти системы отсчёта называются инерциальными и движутся друг относительно друга равномерно и прямолинейно. Во всех инерциальных системах отсчёта свойства пространства и времени одинаковы, и все процессы в механических системах подчиняются одинаковым законам. Этот принцип можно также сформулировать как отсутствие абсолютных систем отсчёта, то есть систем отсчёта, каким-либо образом выделенных относительно других .

Законы Ньютона

Основой классической механики являются три закона Ньютона.

Второго закона Ньютона недостаточно для описания движения частицы. Дополнительно требуется описание силы , полученное из рассмотрения сущности физического взаимодействия, в котором участвует тело.

Закон сохранения энергии

Закон сохранения энергии является следствием законов Ньютона для замкнутых консервативных систем, то есть систем, в которых действует только консервативные силы . С более фундаментальной точки зрения существует взаимосвязь закона сохранения энергии и однородности времени , выражаемая теоремой Нётер .

За пределами применимости законов Ньютона

Классическая механика также включает в себя описания сложных движений протяжённых неточечных объектов. Законы Эйлера обеспечивают расширение законов Ньютона на эту область. Понятие угловой момент опирается на те же математические методы, используемые для описания одномерного движения.

Уравнения движение ракеты расширяют понятие скорости, когда импульса объекта меняется со временем, чтобы учесть такой эффект как потеря массы. Есть две важные альтернативные формулировки классической механики: механика Лагранжа и Гамильтонова механика. Эти и другие современные формулировки, как правило, обходят понятие «сила», и делают упор на другие физические величины, такие как энергия или действие, для описания механических систем.

Приведенные выше выражения для импульса и кинетической энергии действительны только при отсутствии значительного электромагнитного вклада. В электромагнетизме, второй закон Ньютона для провода с током нарушается, если не включает в себя вклад электромагнитного поля в импульс системы выраженный через вектор Пойнтинга поделённый на c 2 , где c - это скорость света в свободном пространстве.

История

Древнее время

Классическая механика зародилась в древности главным образом в связи с проблемами, которые возникали при строительстве . Первым из разделов механики, получившим развитие стала статика , основы которой были заложены в работах Архимеда в III веке до н. э. Им были сформулированы правило рычага, теорема о сложении параллельных сил , введено понятие центра тяжести , заложены основы гидростатики (сила Архимеда).

Средние века

Новое время

XVII век

XVIII век

XIX век

В XIX веке развитие аналитической механики происходит в работах Остроградского , Гамильтона , Якоби , Герца и др. В теории колебаний Раусом, Жуковским и Ляпуновым была разработана теория устойчивости механических систем. Кориолис разработал теорию относительного движения, доказав теорему о разложении ускорения на составляющие . Во второй половине XIX века происходит выделение кинематики в отдельный раздел механики.

Особенно значительны в XIX веке были успехи в области механики сплошной среды . Навье и Коши в общей форме сформулировали уравнения теории упругости . В работах Навье и Стокса были получены дифференциальные уравнения гидродинамики с учётом вязкости жидкости. Наряду с этим происходит углубление знаний в области гидродинамики идеальной жидкости: появляются работы Гельмгольца о вихрях, Кирхгофа , Жуковского и Рейнольдса о турбулентности, Прандтля о пограничных эффектах. Сен-Венан разработал математическую модель , описывающую пластические свойства металлов.

Новейшее время

В XX веке интерес исследователей переключается на нелинейные эффекты в области классической механики. Ляпунов и Анри Пуанкаре заложили основы теории нелинейных колебаний. Мещерский и Циолковский провели анализ динамики тел переменной массы. Из механики сплошной среды выделяется аэродинамика , основы которой разработаны Жуковским. В середине XX века активно развивается новое направление в классической механике - теория хаоса . Важными также остаются вопросы устойчивости сложных динамических систем.

Ограничения классической механики

Классическая механика дает точные результаты для систем, которые мы встречаем в повседневной жизни. Но её предсказания становятся некорректными для систем, скорость которых приближается к скорости света , где она заменяется релятивистской механикой или для очень малых систем, где действуют законы квантовой механики. Для систем, которые объединяют оба эти свойства, вместо классической механики применяется релятивистская квантовая теория поля. Для систем с очень большим количеством составляющих, или степеней свободы, классическая механика также не может быть адекватной, зато используются методы статистической механики.

Классическая механика является широко применяемой, потому что она, во-первых, гораздо проще и легче в применении, чем перечисленные выше теории, и, во-вторых, имеет большие возможности для аппроксимации и применения для очень широкого класса физических объектов, начиная с привычных, таких как волчок или мяч, до больших астрономических объектов (планеты, галактики) и совсем микроскопических (органические молекулы).

Хотя классическая механика является в целом совместимой с другими «классическими» теориями, такими как классическая электродинамика и термодинамика, имеются некоторые несоответствия между этими теориями, которые были найдены в конце 19 века. Они могут быть решены методами более современной физики. В частности, уравнения классической электродинамики неинвариантны относительно преобразований Галилея. Скорость света входит в них как константа, что означает, что классическая электродинамика и классическая механика могли бы быть совместимы только в одной избранной системе отсчета, связанной с эфиром. Однако, экспериментальная проверка не выявила существование эфира, что привело к созданию специальной теории относительности, в рамках которой были модифицированы уравнения механики. Принципы классической механики также несовместимы с некоторыми утверждениями классической термодинамики, что приводит к парадоксу Гиббса, согласно которому невозможно точно установить энтропию, и к ультрафиолетовой катастрофе, в которой абсолютно черное тело должно излучать бесконечное количество энергии. Для преодоления этих несовместимости была создана квантовая механика.

Примечания

Интернет-ссылки

Литература

  • Арнольд В.И. Авец А. Эргодические проблемы классической механики.. - РХД, 1999. - 284 с.
  • Б. М. Яворский, А. А. Детлаф. Физика для школьников старших классов и поступающих в вузы. - М .: Академия, 2008. - 720 с. - (Высшее образование). - 34 000 экз. - ISBN 5-7695-1040-4
  • Сивухин Д. В. Общий курс физики. - Издание 5-е, стереотипное. - М .: Физматлит , 2006. - Т. I. Механика. - 560 с. - ISBN 5-9221-0715-1
  • А. Н. Матвеев. Механика и теория относительности . - 3-е изд. - М .: ОНИКС 21 век: Мир и Образование, 2003. - 432 с. - 5000 экз. - ISBN 5-329-00742-9
  • Ч. Киттель, У. Найт, М. Рудерман Механика. Берклеевский курс физики. - М .: Лань, 2005. - 480 с. - (Учебники для вузов). - 2000 экз. - ISBN 5-8114-0644-4
  • Ландау, Л. Д. , Лифшиц, Е. М. Механика. - Издание 5-е, стереотипное. - М .:

Механика - раздел физики, который изучает одну из простейших и наиболее общих форм движения в природе, называемую механическим движением.

Механическое движение заключается в изменении с течением времени положения тел или их частей друг относительно друга. Так механическое движение совершают планеты, обращающиеся по замкнутым орбитам вокруг Солнца; различные тела, перемещающиеся по поверхности Земли; электроны, движущиеся под действием электромагнитного поля и т.д. Механическое движение присутствует в других более сложных формах материи как составная, но не исчерпывающая часть.

В зависимости от характера изучаемых объектов механика подразделяется на механику материальной точки, механику твердого тела и механику сплошной среды.

Принципы механики впервые были сформулированы И. Ньютоном (1687 год) на основе экспериментального изучения движения макротел с малыми по сравнению со скоростью света в вакууме (3·10 8 м/с) скоростями.

Макротелами называют обычные тела, окружающие нас, то есть тела, состоящие из громадного количества молекул и атомов.

Механику, изучающую движение макротел со скоростями намного меньшими скорости света в вакууме, называют классической.

В основе классической механики лежат следующие представления Ньютона о свойствах пространства и времени.

Любой физический процесс протекает в пространстве и времени. Это видно хотя бы из того, что во всех областях физических явлений каждый закон явно или неявно содержит пространственно-временные величины - расстояния и промежутки времени.

Пространство, имеющее три измерения, подчиняется эвклидовой геометрии, то есть является плоским.

Расстояния измеряются масштабами, основным свойством которых является то, что два однажды совпавших по длине масштаба всегда остаются равными друг другу, то есть при каждом последующем наложении совпадают.

Промежутки времени измеряются часами, причем роль последних может выполнять любая система, совершающая повторяющийся процесс.

Основной чертой представлений классической механики о размерах тел и промежутках времени является их абсолютность : масштаб всегда имеет одну и туже длину, независимо от того, как он движется относительно наблюдателя; двое часов, имеющих одинаковый ход и приведенные однажды в соответствие друг другу, показывают одно и тоже время независимо от того, как они движутся.

Пространство и время обладают замечательными свойствами симметрии , налагающими ограничения на протекание в них тех или иных процессов. Эти свойства установлены на опыте и кажутся на первый взгляд столь очевидными, что, вроде бы, и нет надобности выделять их и заниматься ими. А между тем, не будь пространственной и временной симметрии, никакая физическая наука не могла бы ни возникнуть, ни развиваться.

Оказывается, пространство однородно и изотропно , а время - однородно .

Однородность пространства состоит в том, что одинаковые физические явления в одних и тех же условиях совершаются одинаково в различных частях пространства. Все точки пространства, таким образом, совершенно неразличимы, равноправны и любая из них может быть принята за начало системы координат. Однородность пространства проявляется в законе сохранения импульса .

Пространство обладает еще и изотропностью: одинаковостью свойств во всех направлениях. Изотропность пространства проявляется в законе сохранения момента импульса .

Однородность времени заключается в том, что все моменты времени также равноправны, эквивалентны, то есть протекание одинаковых явлений в одних и тех же условия одинаково, безотносительно ко времени их осуществления и наблюдения.

Однородность времени проявляется в законе сохранения энергии .

Не будь этих свойств однородности, установленный в Минске физический закон был бы несправедлив в Москве, а открытый сегодня в том же месте мог бы быть несправедлив завтра.

В классической механике признается справедливость закона инерции Галилея-Ньютона, согласно которому тело, не подверженное действию со стороны других тел, движется прямолинейно и равномерно. Этот закон утверждает существование инерциальных систем отсчета, в которых выполняются законы Ньютона (а также принцип относительности Галилея). Принцип относительности Галилея утверждает, что все инерциальные системы отсчета эквивалентны друг другу в механическом отношении , все законы механики одинаковы в этих системах отсчета, или, другими словами, инвариантны относительно преобразований Галилея, выражающих пространственно-временную связь любого события в разных инерциальных системах отсчета. Преобразования Галилея показывают, что координаты любого события относительны, то есть имеют разные значения в разных системах отсчета; моменты же времени, когда событие произошло, одинаковы в разных системах. Последнее означает, что время течет одинаковым образом в разных системах отсчета. Это обстоятельство казалось столь очевидным, что даже не оговаривалось как специальный постулат.

В классической механике соблюдается принцип дальнодействия: взаимодействия тел, распространяются мгновенно, то есть с бесконечно большой скоростью .

В зависимости от того, с какими скоростями происходят перемещения тел и каковы размеры самих тел, механика подразделяется на классическую, релятивистскую, квантовую.

Как уже указывалось, законы классической механики применимы лишь к движению макротел, масса которых гораздо больше массы атома, с малыми скоростями по сравнению со скоростью света в вакууме.

Релятивистская механика рассматривает движение макротел со скоростями, близкими к скорости света в вакууме.

Квантовая механика - механика микрочастиц, движущихся со скоростями намного меньшими скорости света в вакууме.

Релятивистская квантовая механика - механика микрочастиц, движущихся со скоростями, приближающимися к скорости света в вакууме.

Чтобы определить принадлежит ли частица к макроскопическим, применимы ли к ней классические формулы, нужно воспользоваться принципом неопределенности Гейзенберга . Согласно квантовой механики реальные частицы могут быть охарактеризованы с помощью координаты и импульса лишь с некоторой точностью. Предел этой точности определяется так

где
ΔX - неопределенность координаты;
ΔP x - неопределенность проекции на ось импульса;
h - постоянная Планка, равная 1,05·10 -34 Дж·с;
"≥" - больше величины, порядка …

Заменив импульс произведением массы на скорость, можно написать

Из формулы видно, что чем меньше масса частицы, тем менее определенными делаются ее координаты и скорость. Для макроскопических тел практическая применимость классического способа описания движения не вызывает сомнений. Допустим, например, что речь идет о движении шарика с массой в 1 г. Обычно положение шарика практически может быть определено с точностью до десятой или сотой доли миллиметра. Во всяком случае, вряд ли имеет смысл говорить об ошибке в определении положения шарика, меньшей размеров атома. Положим поэтому ΔX=10 -10 м. Тогда из соотношения неопределенностей найдем

Одновременная малость величин ΔX и ΔV x и является доказательством практической применимости классического способа описания движения макротел.

Рассмотрим движение электрона в атоме водорода. Масса электрона 9,1·10 -31 кг. Ошибка в положении электрона ΔX во всяком случае не должна превышать размеры атома, то есть ΔX<10 -10 м. Но тогда из соотношения неопределенностей получаем

Эта величина даже больше скорости электрона в атоме, которая по порядку величины равна 10 6 м/с. При таком положении классическая картина движения теряет всякий смысл.

Механику подразделяют на кинематику, статику и динамику . Кинематика описывает движение тел, не интересуясь причинами, обусловившими это движение; статика рассматривает условия равновесия тел; динамика изучает движение тел в связи с теми причинами (взаимодействиями между телами), которые обусловливают тот или иной характер движения.

Реальные движения тел настолько сложны, что, изучая их, необходимо отвлечься от несущественных для рассматриваемого движения деталей (в противном случае задача так усложнилась бы, что решить ее практически было бы невозможно). С этой целью используют понятия (абстракции, идеализации), применимость которых зависит от конкретного характера интересующей нас задачи, а также от степени точности, с которой мы хотим получить результат. Среди этих понятий большую роль играют понятия материальной точки, системы материальных точек, абсолютно твердого тела.

Материальная точка - это физическое понятие, с помощью которого описывается поступательное движение тела, если только его линейные размеры малы в сравнении с линейными размерами других тел в рамках заданной точности определения координаты тела, причем, ей приписывается масса тела.

В природе материальных точек не существует. Одно и то же тело в зависимости от условий можно рассматривать или как материальную точку, или как тело конечных размеров. Так, Землю, движущуюся вокруг Солнца, можно считать материальной точкой. Но при изучении вращения Земли вокруг своей оси ее уже нельзя считать материальной точкой, так как на характер этого движения существенно влияют форма и размеры Земли, и путь, проходимый какой-либо точкой земной поверхности за время, равное периоду ее обращения вокруг своей оси, сравним с линейными размерами земного шара. Самолет можно рассматривать как материальную точку, если изучать движение его центра масс. Но если необходимо учитывать влияние среды или определить усилия в отдельных частях самолета, то мы должны рассматривать самолет как абсолютно твердое тело.

Абсолютно твердым телом называют тело, деформациями которого в условиях данной задачи можно пренебречь.

Система материальных точек - это совокупность рассматриваемых тел, представляющих собой материальные точки.

Изучение движения произвольной системы тел сводится к изучению системы взаимодействующих материальных точек. Естественно, поэтому начать изучение классической механики с механики одной материальной точки, а затем перейти к изучению системы материальных точек.

Это раздел физики, изучающий движение на основе законов Ньютона. Классическая механика подразделяется на:
Базовыми понятиями классической механики является понятие силы, массы и движения. Масса в классической механике определяется как мера инерции, или способности тела к сохранению состояния покоя или равномерного прямолинейного движения при отсутствии воздействия на него сил. С другой стороны, силы, действующие на тело, изменяют состояние его движения, вызывая ускорение. Взаимодействие этих двух эффектов и является главной темой механики Ньютона.
Другими важными понятиями этого раздела физики есть энергия, импульс, момент импульса, которые могут передаваться между объектами в процессе взаимодействия. Энергия механической системы складывается из ее кинетической (энергии движения) и потенциальной (зависимой от положения тела относительно других тел) энергий. Относительно этих физических величин действуют фундаментальные законы сохранения.
Основы классической механики были заложены Галилеем, а также Коперником и Кеплером при изучении закономерностей движения небесных тел, и долгое время механика и физика рассматривались в контексте астрономических событий.
В своих работах Коперник отмечал, что вычисление закономерностей движения небесных тел может быть значительно упрощен, если отойти от принципов, заложенных Аристотелем, и считать Солнце, а не Землю, отправной точкой для таких вычислений, т.е. осуществить переход от геоцентрической к гелиоцентрической систем.
Идеи гелиоцентрической системы дальше были формализованы Кеплером в его трех законах движения небесных тел. В частности, из второго закона следовало, что все планеты солнечной системы движутся эллиптическими орбитами, имеющие одним из своих фокусов Солнце.
Следующий важный вклад в основание классической механики был осуществлен Галилеем, который, исследуя фундаментальные закономерности механического движения тел, в частности под воздействием сил земного притяжения, сформулировал пять универсальных законов движения.
Но все же лавры основного основателя классической механике относятся Исааку Ньютону, который в своей работе «Математические начала натуральной философии» осуществил синтез тех понятий по физике механического движения, которые были сформулированы его предшественниками. Ньютон сформулировал три фундаментальные законы движения, которые были названы его именем, а также закон всемирного тяготения, который подводил черту под исследованиями Галилеем феномена свободного падения тел. Таким образом, была создана новая, на замену устаревшей Аристотелевой, картина мира базовых его законов.
Классическая механика дает точные результаты для систем, которые мы встречаем в повседневной жизни. Но они становятся некорректными для систем, скорость которых приближается к скорости света, где она заменяется релятивистской механикой, либо для очень малых систем, где действуют законы квантовой механики. Для систем, которые объединяют оба эти свойства, вместо классической механики обеими характеристиками квантовая теория поля. Для систем с очень большим количеством составляющих, или степеней свободы, классическая механика также быть адекватной, зато используются методы статистической механики
Классическая механика сохраняет, потому что она, во-первых, гораздо проще в применении, чем остальные теории, и, во-вторых, имеет большие возможности для аппроксимации и применение для очень широкого класса физических объектов, начиная со привычных, таких как волчок или мяч, многих астрономических объектов (планеты, галактики) и совсем микроскопических).
Хотя классическая механика в общих чертах совместима с другими «классическими теориями, такими как классическая электродинамика и термодинамика, имеются некоторые несоответствия между этими теориями, которые были найдены в конце 19 века. Они могут быть решены методами более современной физики. В частности, классическая электродинамика предсказывает, что скорость света постоянна, что несовместимо с классической механикой и привело к созданию специальной теории относительности. Принципы классической механики рассмотрении совместно с утверждениями классической термодинамики, что приводит к парадоксу Гиббса, согласно которому невозможно точно определить величину энтропии и к ультрафиолетовой катастрофе, в которой абсолютно черное тело должно излучать бесконечное количество энергии. Для преодоления этих несоответствий была создана квантовая механика.
Объекты, которые изучаются механикой, называются механическими системами. Задачей механики является изучение свойств механических систем, в частности их эволюции во времени.
Базовый математический аппарат классической механики дифференциальное и интегральное исчисление, разработанное специально для этого Ньютоном и Лейбницем. В классическом формулировке механика строится на трех законах Ньютона.
Далее дается изложение базовых концепций классической механики. Для простоты будем рассматривать только материальную точку объекта, размерами которого можно пренебречь. Движение материальной точки характеризуется несколькими параметрами: ее положением, массой, и приложенными к ней силами.
В реальности, размеры каждого объекта, с которым имеет дело классическая механика, является ненулевыми. Материальные точки, такие, как электрон, подчиняются законам квантовой механики. Объекты ненулевого размера могут испытывать более сложные движения, поскольку их внутреннее состояние может меняться например, мяч может еще и вращаться. Тем не менее, к таким телам результаты, полученные для материальных точек, рассматривая их как совокупности большого количества взаимодействующих материальных точек. Такие сложные тела ведут себя как материальные точки, если их малы в масштабах рассматриваемой задачи.
Радиус-вектор и его производные
Положение объекта материальной точки определяется относительно фиксированной точки в пространстве, которая называется началом координат. Оно может быть задано координатами этой точки (например, в прямоугольной системе координат) или радиус-вектором r, проведенным из начала координат в эту точку. В реальности, материальная точка может двигаться с течением времени, поэтому радиус-вектор в общем случае является функцией времени. В классической механике, в отличие от релятивистской, считается, что течение времени является одинаковым во всех системах отсчета.
Траектория
Траекторией называется совокупность всех положений материальной точки, движущейся в общем случае она является кривой линией, вид которой зависит от характера движения точки и выбранной системы отсчета.
Перемещение
Перемещение это вектор, соединяющий начальное и конечное положение материальной точки.
Скорость
Скорость, или отношение перемещения ко времени, в течение которого оно происходит, определяется как первая производная от перемещения к времени:

В классической механике, скорости можно добавлять и отнимать. Например, если одна машина едет на запад со скоростью 60 км / ч, и догоняет другую, которая движется в том же направлении со скоростью 50 км / ч, то относительно второй машина первая движется на запад со скоростью 60-50 = 10 км / ч. Зато на перспективу быстрые машины, медленнее движется со скоростью 10 км / ч на восток.
Для определения относительной скорости в любом случае применяются правила векторной алгебры для составления векторов скорости.
Ускорение
Ускорение, или скорость изменения скорости это производная от скорости до времени или вторая производная от перемещения к времени:

Вектор ускорения может меняться по величине, так и по направлению. В частности, если скорость уменьшается, иногда ускорение "замедлением, но вообще любую изменению скорости.
Силы. Второй закон Ньютона
Второй закон Ньютона утверждает, что ускорение материальной точки является прямо пропорциональным силе, на нее действует, а вектор ускорения направлен по линии действия этой силы. Иными словами, этот закон связывает силу, которая действует на тело с его массой и ускорением. Тогда второй закон Ньютона выглядит так:

Величина m v называется импульсом. Обычно, масса m не изменяется со временем, и закон Ньютона можно записать в упрощенной форме

Где а ускорение, которое было определено выше. Масса тела m Не всегда с течением времени. Например, масса ракеты уменьшается по мере использования горючего. При таких обстоятельствах, последнее выражение неприменимо, и следует пользоваться полной формой второго закона Ньютона.
Второго закона Ньютона недостаточно для описания движения частицы. Он требует определения той силы, которая на нее действует. Например, типичный выражение для силы трения при движении тела в газе или в жидкости определяется следующим образом:

Где? некоторая константа, которая называется коэффициентом трения.
После того как определены все силы, на базе второго закона Ньютона получим дифференциальное уравнение, называемое уравнением движения. В нашем примере с лишь одной силой, которая действует на частицу, получим:

Проинтегрировав, получим:

Где Начальная скорость. Это означает, что скорость движения нашего объекта уменьшается экспоненциально до нуля. Это выражение в свою очередь может быть вновь проинтегровано для получения выражения для радиус-вектора r тела в зависимости от времени.
Если на частицу действуют несколько сил, то они добавляются по правилам сложения векторов.
Энергия
Если сила F действует на частицу, которая в результате этого перемещается на? r, то при этом выполняется работа, равный:

Если масса частицы стала, то тоскуя работы, выполненные всеми силами, из второго закона Ньютона

Где Т кинетическая энергия. Для материальной точки определяется как

Для сложных объектов из множества частиц, кинетическая энергия тела равна сумме кинетических энергий всех частиц.
Особый класс консервативных сил может быть выражен градиентом скалярной функции, известной как потенциальная энергия V:

Если все силы, действующие на частицу консервативны, а V полная потенциальная энергия, полученная добавлением потенциальных энергий всех сил, то
Т.е. полная энергия E = T + V сохраняется во времени. Это проявление одного из фундаментальных физических законов сохранения. В классической механике он может быть полезным практически, ведь много разновидностей сил в природе являются консервативными.
Законы Ньютона имеют несколько важных последствий для твердых тел (см. момент импульса)
Существуют также два важных альтернативные формулировки классической механики: механика Лагранжа и гамильтонова механика. Они эквивалентны механике Ньютона, но иногда оказываются полезными для анализа некоторых проблем. Они, как и другие современные формулировки, не используют понятие силы, вместо обращаясь к другим физических величин, таких как энергия.

Государственный Университет Управления

Институт заочного обучения

Специальность – менеджмент

по дисциплине: КСЕ

«Механика Ньютона – основа классического описания природы. Основная задача механики и границы ее применимости».

Выполнил

Студенческий билет №1211

Группа №УП4-1-98/2


1. Введение.__________________________________________________ 3

2. Механика Ньютона.________________________________________ 5

2.1. Законы движения Ньютона.______________________________________________ 5

2.1.1. Первый закон Ньютона.________________________________________________ 6

2.1.2. Второй закон Ньютона.________________________________________________ 7

2.1.3. Третий закон Ньютона._________________________________________________ 8

2.2. Закон всемирного тяготения.___________________________________________ 11

2.3. Основная задача механики._____________________________________________ 13

2.4. Границы применимости._______________________________________________ 15

3. Заключение.______________________________________________ 18

4. Список литературы.______________________________________ 20


Н ь ю т о н (1643-1727)

Был этот мир глубокой тьмой окутан.

Да будет свет! И вот явился Ньютон.

1. Введение.

Понятие «физика» уходит своими корнями в глубокое прошлое, в переводе с греческого оно означает «природа». Основной задачей этой науки является установление «законов» окружающего мира. Одно из основных сочинений Платона, ученика Аристотеля, называлось «Физика».

Наука тех лет имела натурфилософский характер, т.е. исходила из того, что непосредственно наблюдаемые перемещения небесных светил есть их действительные перемещения. Отсюда был сделан вывод о центральном положении Земли во Вселенной. Эта система верно отражала некоторые особенности Земли как небесного тела: то, что Земля - шар, что все тяготеет к ее центру. Таким образом, это учение было собственно о Земле. На уровне своего времени оно отвечало основным требованиям, которые предъявлялись к научному знанию. Во-первых, оно с единой точки зрения объясняло наблюдаемые перемещения небесных тел и, во-вторых, давало возможность вычислять их будущие положения. В то же время теоретические построения древних греков носили чисто умозрительный характер – они были совершенно оторваны от эксперимента.

Такая система просуществовала вплоть до XVI столетия, до появления учения Коперника, получившее свое дальнейшее обоснование в экспериментальной физике Галилея, завершившееся созданием ньютоновской механики, объединившей едиными законами движения перемещение небесных тел и земных объектов. Оно явилось величайшей революцией в естествознании, положившей начало развитию науки в ее современном понимании.

Галилео Галилей считал, что мир бесконечен, а материя вечна. Во всех процессах ничто не уничтожается и не порождается – происходит лишь изменение взаимного расположения тел или их частей. Материя состоит из абсолютно неделимых атомов, ее движение – единственное, универсальное механическое перемещение. Небесные светила подобны Земле и подчиняются единым законам механики.

Для Ньютона было важно однозначно выяснить с помощью экспериментов и наблюдений свойства изучаемого объекта и строить теорию на основе индукции без использования гипотез. Он исходил из того, что в физике как экспериментальной науке нет места для гипотез. Признавая не безупречность индуктивного метода, он считал его среди прочих наиболее предпочтительным.

И в эпоху античности, и в XVII веке признавалась важность изучения движения небесных светил. Но если для древних греков данная проблема имела больше философское значение, то для XVII века, преобладающим был аспект практический. Развитие мореплавания обусловливало необходимость выработки более точных астрономических таблиц для целей навигации по сравнению с теми, которые требовались для астрологических целей. Основной задачей было определение долготы, столь нужной астрономам и мореплавателям. Для решения этой важной практической проблемы и создавались первые государственные обсерватории (в 1672 г. Парижская, в 1675 г. Гринвичская). По сути своей это была задача определения абсолютного времени, дававшего при сравнении с местным временем интервал времени, который и можно было перевести в долготу. Определить это время можно было с помощью наблюдения движений Луны среди звезд, а также с помощью точных часов, поставленных по абсолютному времени и находящихся у наблюдателя. Для первого случая были необходимы очень точные таблицы для предсказания положения небесных светил, а для второго – абсолютно точные и надежные часовые механизмы. Работы в этих направлениях не были успешными. Найти решение удалось лишь Ньютону, который, благодаря открытию закона всемирного тяготения и трех основных законов механики, а также дифференциального и интегрального исчисления, предал механике характер цельной научной теории.

2. Механика Ньютона.

Вершиной научного творчества И. Ньютона является его бессмертный труд “Математические начала натуральной философии”, впервые опубликованный в 1687 году. В нем он обобщил результаты, полученные его предшественниками и свои собственные исследования и создал впервые единую стройную систему земной и небесной механики, которая легла в основу всей классической физики. Здесь Ньютон дал определения исходных понятий – количества материи, эквивалентного массе, плотности; количества движения, эквивалентного импульсу, и различных видов силы. Формулируя понятие количества материи, он исходил из представления о том, что атомы состоят из некой единой первичной материи; плотность понимал как степень заполнения единицы объема тела первичной материей. В этой работе изложено учение Ньютона о всемирном тяготении, на основе которого он разработал теорию движения планет, спутников и комет, образующих солнечную систему. Опираясь на этот закон, он объяснил явление приливов и сжатие Юпитера.

Концепция Ньютона явилась основой для многих технических достижений в течение длительного времени. На ее фундаменте сформировались многие методы научных исследований в различных областях естествознания.

2.1. Законы движения Ньютона.

Если кинематика изучает движение геометрического тела, который не обладает никакими свойствами материального тела, кроме свойства занимать определенное место в пространстве и изменять это положение с течением времени, то динамика изучает движение реальных тел под действием приложенных к ним сил. Установленные Ньютоном три закона механики лежат в основе динамики и составляют основной раздел классической механики.

Непосредственно их можно применять к простейшему случаю движения, когда движущееся тело рассматривается как материальная точка, т.е. когда размер и форма тела не учитывается и когда движение тела рассматривается как движение точки, обладающей массой. В кипятке для описания движения точки можно выбрать любую систему координат, относительно которой определяются характеризующие это движение величины. За тело отсчета может быть принято любое тело, движущееся относительно других тел. В динамике имеют дело с инерциальными системами координат, характеризуемыми тем, что относительно них свободная материальная точка движется с постоянной скоростью.

2.1.1. Первый закон Ньютона.

Закон инерции впервые был установлен Галилеем для случая горизонтального движения: когда тело движется по горизонтальной плоскости, то его движение является равномерным и продолжалось бы постоянно, если бы плоскость простиралась в пространстве без конца. Ньютон дал более общую формулировку закону инерции как первому закону движения: всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние.

В жизни этот закон описывает случай когда, если перестать тянуть или толкать движущееся тело, то оно останавливается, а не продолжает двигаться с постоянной скоростью. Так автомобиль с выключенным двигателем останавливается. По закону Ньютона на катящийся по инерции автомобиль должна действовать тормозящая сила, которой на практике является сопротивление воздуха и трение автомобильных шин о поверхность шоссе. Они-то и сообщают автомобилю отрицательное ускорение до тех пор, пока он не остановиться.

Недостатком данной формулировки закона является то, что в ней не содержалось указания на необходимость отнесения движения к инерциальной системе координат. Дело в том, что Ньютон не пользовался понятием инерциальной системы координат, – вместо этого он вводил понятие абсолютного пространства – однородного и неподвижного, – с которым и связывал некую абсолютную систему координат, относительно которой и определялась скорость тела. Когда бессодержательность абсолютного пространства как абсолютной системы отсчета была выявлена, закон инерции стал формулироваться иначе: относительно инерциальной системы координат свободное тело сохраняет состояние покоя или равномерного прямолинейного движения.

2.1.2. Второй закон Ньютона.

В формулировке второго закона Ньютон ввел понятия:

Ускорение – векторная величина (Ньютон называл его количеством движения и учитывал при формулировании правила параллелограмма скоростей), определяющая быстроту изменения скорости движения тела.

Сила – векторная величина, понимаемая как мера механического воздействия на тело со стороны других тел или полей, в результате воздействия которой тело приобретает ускорение или изменяет свою форму и размеры.

Масса тела – физическая величина – одна из основных характеристик материи, определяющая ее инерционные и гравитационные свойства.

Второй закон механики гласит: сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение. Такова его современная формулировка. Ньютон сформулировал его иначе: изменение количества движения пропорционально приложенной действующей силе и происходит по направлению той прямой, по которой эта сила действует, и обратно пропорционально массе тела или математически:

На опыте этот закон легко подтвердить, если к концу пружины прикрепить тележку и отпустить пружину, то за время t тележка пройдет путь s 1 (рис. 1), затем к той же самой пружине прикрепить две тележки, т.е. увеличить массу тела в два раза, и отпустить пружину, то за то же время t они пройдут путь s 2 , в два раза меньший, чем s 1 .

Этот закон также справедлив только в инерциальных системах отсчета. Первый закон с математической точки зрения представляет собой частный случай второго закона, потому что, если равнодействующие силы равны нулю, то и ускорение также равно нулю. Однако первый закон Ньютона рассматривается как самостоятельный закон, т.к. именно он утверждает о существовании инерциальных систем.

2.1.3. Третий закон Ньютона.

Третий закон Ньютона гласит: действию всегда есть равное и противоположное противодействие, иначе тела действуют друг на друга с силами, направленными вдоль одной прямой, равными по модулю и противоположными по направлению или математически:

Ньютон распространил действие этого закона на случай и столкновения тел, и на случай их взаимного притяжения. Простейшей демонстрацией этого закона может служить тело, расположенное на горизонтальной плоскости, на которое действуют сила тяжести F т и сила реакции опоры F о , лежащие на одной прямой, равные по значению и противоположно направленные, равенство этих сил позволяет телу находиться в состоянии покоя (рис. 2).

Из трех фундаментальных законов движения Ньютона вытекают следствия, одно из которых – сложение количества движения по правилу параллелограмма. Ускорение тела зависит от величин, характеризующих действие других тел на данное тело, а также от величин, определяющих особенности этого тела. Механическое действие на тело со стороны других тел, которое изменяет скорость движения данного тела, называют силой. Она может иметь разную природу (сила тяжести, сила упругости и т.д.). Изменение скорости движения тела зависит не от природы сил, а от их величины. Поскольку скорость и сила – векторы, то действие нескольких сил складывается по правилу параллелограмма. Свойство тела, от которого зависит приобретаемое им ускорение, есть инерция, измеряемая массой. В классической механике, имеющей дело со скоростями, значительно меньшими скорости света, масса является характеристикой самого тела, не зависящей от того, движется оно или нет. Масса тела в классической механике не зависит и от взаимодействия тела с другими телами. Это свойство массы побудило Ньютона принять массу за меру материи и считать, что величина ее определяет количество материи в теле. Таким образом, масса стала пониматься как количество материи.

Количество материи доступно измерению, будучи пропорциональным весу тела. Вес – это сила, с которой тело действует на опору, препятствующую его свободному падению. Числено вес равен произведению массы тела на ускорение силы тяжести. Вследствие сжатия Земли и ее суточного вращения вес тела изменяется с широтой и на экваторе на 0,5% меньше, чем на полюсах. Поскольку масса и вес строго пропорциональны, оказалось возможным практическое измерение массы или количества материи. Понимание того, что вес является переменным воздействием на тело, побудило Ньютона установить и внутреннюю характеристику тела – инерцию, которую он рассматривал как присущую телу способность сохранять равномерное прямолинейное движение, пропорциональную массе. Массу как меру инерции можно измерять с помощью весов, как это делал Ньютон.

В состоянии невесомости массу можно измерять по инерции. Измерение по инерции является общим способом измерения массы. Но инерция и вес являются различными физическими понятиями. Их пропорциональность друг другу весьма удобна в практическом отношении – для измерения массы с помощью весов. Таким образом, установление понятий силы и массы, а также способа их измерения позволило Ньютону сформулировать второй закон механики.

Первый и второй законы механики относятся соответственно к движению материальной точки или одного тела. При этом учитывается лишь действие других тел на данное тело. Однако всякое действие есть взаимодействие. Поскольку в механике действие характеризуется силой, то если одно тело действует на другое с определенной силой, то второе действует на первое с той же силой, что и фиксирует третий закон механики. В формулировке Ньютона третий закон механики справедлив лишь для случая непосредственного взаимодействия сил или при мгновенной передаче действия одного тела на другое. В случае передачи действия за конечный промежуток времени данный закон применяется тогда, когда временем передачи действия можно пренебречь.

2.2. Закон всемирного тяготения.

Считается, что стержнем динамики Ньютона является понятие силы, а основная задача динамики заключается в установлении закона из данного движения и, наоборот, в определении закона движения тел по данной силе. Из законов Кеплера Ньютон вывел существование силы, направленной к Солнцу, которая была обратно пропорциональна квадрату расстояния планет от Солнца. Обобщив идеи, высказанные Кеплером, Гюйгенсом, Декартом, Борелли, Гуком, Ньютон придал им точную форму математического закона, в соответствии с которым утверждалось существование в природе силы всемирного тяготения, обусловливающей притяжение тел. Сила тяготения прямо пропорциональна произведению масс тяготеющих тел и обратно пропорционально квадрату расстояния между ними или математически:

Где G – гравитационная постоянная.

Данный закон описывает взаимодействие любых тел – важно лишь то, чтобы расстояние между телами было достаточно велико по сравнению с их размерами, это позволяет принимать тела за материальные точки. В ньютоновской теории тяготения принимается, что сила тяготения передается от одного тяготеющего тела к другому мгновенно, при чем без посредства каких бы то ни было сред. Закон всемирного тяготения вызвал продолжительные и яростные дискуссии. Это не было случайно, поскольку этот закон имел важное философское значение. Суть заключалась в том, что до Ньютона целью создания физических теорий было выявление и представление механизма физических явлений во всех его деталях. В тех случаях, когда это сделать не удавалось, выдвигался аргумент о так называемых "скрытых качествах", которые не поддаются детальной интерпретации. Бэкон и Декарт ссылки на "скрытые качества" объявили ненаучными. Декарт считал, что понять суть явления природы можно лишь в том случае, если его наглядно представить себе. Так, явления тяготения он представлял с помощью эфирных вихрей. В условиях широкого распространения подобных представлений закон всемирного тяготения Ньютона, несмотря на то, что демонстрировал соответствие произведенных на его основе астрономическим наблюдениям с небывалой ранее точностью, подвергался сомнению на том основании, что взаимное притяжение тел очень напоминало перипатетическое учение о "скрытых качествах". И хотя Ньютон установил факт его существования на основе математического анализа и экспериментальных данных, математический анализ еще не вошел прочно в сознание исследователей в качестве достаточно надежного метода. Но стремление ограничивать физическое исследование фактами, не претендующими на абсолютную истину, позволило Ньютону завершить формирование физики как самостоятельной науки и отделить ее от натурфилософии с ее претензиями на абсолютное знание.

В законе всемирного тяготения наука получила образец закона природы как абсолютно точного, повсюду применимого правила, без исключений, с точно определенными следствиями. Этот закон был включен Кантом в его философию, где природа представлялась царством необходимости в противоположность морали - царству свободы.

Физическая концепция Ньютона была своеобразным венцом физики XVII века. Статический подход к Вселенной был заменен динамическим. Эксперементально-математический метод исследования, позволив решить многие проблемы физики XVII века, оказался пригодным для решения физических проблем еще в течение двух веков.

2.3. Основная задача механики.

Результатом развития классической механики явилось создание единой механической картины мира, в рамках которой все качественное многообразие мира объяснялось различиями в движении тел, подчиняющемся законам ньютоновской механики. Согласно механической картине мира, если физическое явление мира можно было объяснить на основе законов механики, то такое объяснение признавалось научным. Механика Ньютона, таким образом, стала основой механической картины мира, господствовавшей вплоть до научной революции на рубеже XIX и XX столетий.

Механика Ньютона, в отличие от предшествующих механических концепций, давало возможность решать задачу о любой стадии движения, как предшествующей, так и последующей, и в любой точке пространства при известных фактах, обусловливающих это движение, а также обратную задачу определения величины и направления действия этих факторов в любой точке при известных основных элементах движения. Благодаря этому механика Ньютона могла использоваться в качестве метода количественного анализа механического движения. Любые физические явления могли изучаться как, независимо от вызывающих их факторов. Например, можно вычислить скорость спутника Земли: Для простоты найдем скорость спутника с орбитой, равной радиусу Земли (рис. 3). С достаточной точностью можно приравнять ускорение спутника ускорению свободного падения на поверхности Земли:

С другой стороны центростремительное ускорение спутника.

откуда . – Эта скорость называется первой космической скоростью. Тело любой массы, которому будет сообщена такая скорость, станет спутником Земли.

Законы ньютоновской механики связывали силу не с движением, а с изменением движения. Это позволило отказаться от традиционных представлений о том, что для поддержания движения нужна сила, и отвести трению, которое делало силу необходимой в действующих механизмах для поддержания движения, второстепенную роль. Установив динамический взгляд на мир вместо традиционного статического, Ньютон свою динамику сделал основой теоретической физики. Хотя Ньютон проявлял осторожность в механических истолкованиях природных явлений, все равно считал желательным выведение из начал механики остальных явлений природы. Дальнейшее развитие физики стало осуществляться в направлении дальнейшей разработки аппарата механики применительно к решению конкретных задач, по мере решения которых механическая картина мира укреплялась.

2.4. Границы применимости.

Вследствие развития физики в начале XX века определилась область применения классической механики: ее законы выполняются для движений, скорость которых много меньше скорости света. Было установлено, что с ростом скорости масса тела возрастает. Вообще законы классической механики Ньютона справедливы для случая инерциальных систем отсчета. В случае неинерциальных систем отсчета ситуация иная. При ускоренном движении неинерциальной системы координат относительно инерциальной системы первый закон Ньютона (закон инерции) в этой системе не имеет места, – свободные тела в ней будут с течением времени менять свою скорость движения.

Первое несоответствие в классической механике было выявлено, тогда когда был открыт микромир. В классической механике перемещения в пространстве и определение скорости изучались вне зависимости от того, каким образом эти перемещения реализовывались. Применительно к явлениям микромира подобная ситуация, как выявилось, невозможна принципиально. Здесь пространственно-временная локализация, лежащая в основе кинематики, возможна лишь для некоторых частных случаев, которые зависят от конкретных динамических условий движения. В макро масштабах использование кинематики вполне допустимо. Для микро масштабов, где главная роль принадлежит квантам, кинематика, изучающая движение вне зависимости от динамических условий, теряет смысл.

Для масштабов микромира и второй закон Ньютона оказался несостоятельным – он справедлив лишь для явлений большого масштаба. Выявилось, что попытки измерить какую-либо величину, характеризующую изучаемую систему, влечет за собой неконтролируемое изменение других величин, характеризующих данную систему: если предпринимается попытка установить положение в пространстве и времени, то это приводит к неконтролируемому изменению соответствующей сопряженной величины, которая определяет динамическое состояние системы. Так, невозможно точно измерить в одно и то же время две взаимно сопряженные величины. Чем точнее определяется значение одной величины, характеризующей систему, тем более неопределенным оказывается значение сопряженной ей величины. Это обстоятельство повлекло за собой существенное изменение взглядов на понимание природы вещей.

Несоответствие в классической механики исходило из того, что будущее в известном смысле полностью содержится в настоящем – этим и определяется возможность точного предвидения поведения системы в любой будущий момент времени. Такая возможность предлагает одновременное определение взаимно сопряженных величин. В области микромира это оказалось невозможным, что и вносит существенные изменения в понимание возможностей предвидения и взаимосвязи явлений природы: раз значение величин, характеризующих состояние системы в определенный момент времени, можно установить лишь с долей неопределенности, то исключается возможность точного предсказания значений этих величин в последующие моменты времени, т.е. можно лишь предсказать вероятность получения тех или иных величин.

Другое открытие пошатнувшее устои классической механики, было создания теории поля. Классическая механика пыталась свести все явления природы к силам, действующим между частицами вещества, – на этом основывалась концепция электрических жидкостей. В рамках этой концепции реальными были лишь субстанция и ее изменения – здесь важнейшим признавалось описание действия двух электрических зарядов с помощью относящихся к ним понятий. Описание же поля между этими зарядами, а не самих зарядов было весьма существенным для понимания действия зарядов. Вот простой пример нарушения третьего закона Ньютона в таких условиях: если заряженная частица удаляется от проводника, по которому течет ток, и соответственно вокруг него создано магнитное поле, то результирующая сила, действующая со стороны заряженной частицы на проводник с током в точности равна нулю.

Созданной новой реальности места в механической картине мира не было. В результате физика стала иметь дело с двумя реальностями – веществом и полем. Если классическая физика строилась на понятии вещества, то с выявлением новой реальности физическую картину мира приходилось пересматривать. Попытки объяснить электромагнитные явления с помощью эфира оказалось несостоятельными. Эфир экспериментально обнаружить не удалось. Это привело к созданию теории относительности, заставившей пересмотреть представления о пространстве и времени, характерные для классической физики. Таким образом, две концепции – теория квантов и теория относительности – стали фундаментом для новых физических концепций.

3. Заключение.

Вклад, сделанный Ньютоном в развитие естествознания, заключался в том, что он дал математический метод обращения физических законов в количественно измеримые результаты, которые можно было подтвердить наблюдениями, и, наоборот, выводить физические законы на основе таких наблюдений. Как он сам писал в предисловии к "Началам", "... сочинение это нами предлагается как математические основания физики. Вся трудность физики... состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить остальные явления... Было бы желательно вывести из начал механики и остальные явления природы, рассуждая подобным же образом, ибо многое заставляет меня предполагать, что все эти явления обусловливаются некоторыми силами, с которыми частицы тел вследствие причин, пока неизвестных, или стремятся друг к другу и сцепляются в правильные фигуры, или же взаимно отталкиваются и удаляются друг от друга. Так как эти силы неизвестны, до сих пор попытки философов объяснить явления природы и оставались бесплодными. Я надеюсь, однако, что или этому способу рассуждения, или другому, более правильному, изложенные здесь основания доставят некоторое освещение".

Ньютоновский метод стал главным инструментом познания природы. Законы классической механики и методы математического анализа демонстрировали свою эффективность. Физический эксперимент, опираясь на измерительную технику, обеспечивал небывалую ранее точность. Физическое знание все в большей мере становилось основой промышленной технологии и техники, стимулировало развитие других естественных наук. В физике изолированные ранее свет, электричество, магнетизм и теплота оказались объединенными в электромагнитную теорию. И хотя природа тяготения оставалась не выясненной, его действия можно было рассчитать. Утвердилась концепция механистического детерминизма Лапласа, исходившая из возможности однозначно определить поведение системы в любой момент времени, если известные исходные условия. Структура механики как науки казалась прочной, надежной и почти полностью завершенной – т.е. не укладывающиеся в существующие классические каноны феномены, с которыми приходилось сталкиваться, казались вполне объяснимыми в будущем более изощренными умами с позиций классической механики. Складывалось впечатление, что знание физики близко к своему полному завершению – столь мощную силу демонстрировал фундамент классической физики.

4. Список литературы.

1. Карпенков С.Х. Основные концепции естествознания. М.: ЮНИТИ, 1998.

2. Ньютон и философские проблемы физики XX века. Коллектив авторов под ред. М.Д. Ахундова, С.В. Илларионова. М.: Наука, 1991.

3. Гурский И.П. Элементарная физика. М.: Наука, 1984.

4. Большая Советская Энциклопедия в 30 томах. Под ред. ПрохороваА.М., 3 издание, М., Советская энциклопедия, 1970.

5. ДорфманЯ.Г. Всемирная история физики с начала XIX до середины XX вв. М., 1979.


С.Маршак, соч. в 4-х томах, Москва, Гослитиздат, 1959, т. 3, с. 601

Цит. по: Бернал Дж. Наука в истории общества. М.,1956.С.265

Механика - учение о равновесии и движении тел (или их частей) в пространстве и времени. Механическое движение представляет собой простейшую и вместе с тем (для человека) наиболее распространенную форму существования материи. Поэтому механика занимает исключительно важное место в естествознании и является основным подразделом физики. Она исторически возникла и сформировалась как наука раньше других подразделов естествознания.

Механика включает в себя статику, кинематику и динамику. В статике изучаются условия равновесия тел, в кинематике - движения тел с геометрической точки зрения, т.е. без учета действия сил, а в динамике - с учетом этих сил. Статику и кинематику часто рассматривают как введение в динамику, хотя и они имеют самостоятельное значение.

До сих пор под механикой мы подразумевали классическую механику, строительство которой было завершено к началу XX века. В рамках современной физики существуют еще две механики - квантовая и релятивистская. Но более подробно мы рассмотрим классическую механику.

Классическая механика рассматривает движение тел со скоростями много меньше скорости света. Согласно специальной теории относительности, для тел, перемещающихся с большими скоростями, близкими к скорости света, не существует абсолютного времени и абсолютного пространства. Отсюда характер взаимодействия тел становится сложнее, в частности, масса тела, оказывается, зависит от скорости его движения. Все это явилось предметом рассмотрения релятивистской механики, для которой константа скорости света играет фундаментальную роль.

Классическая механика базируется на следующих основных законах.

Принцип относительности Галилея

Согласно этому принципу существует бесконечно много систем отсчёта, в которых свободное тело покоится или движется с постоянной по модулю и направлению скоростью. Эти системы отсчёта называются инерциальными и движутся друг относительно друга равномерно и прямолинейно. Этот принцип можно также сформулировать как отсутствие абсолютных систем отсчёта, то есть систем отсчёта, каким-либо образом выделенных относительно других.

Основой классической механики являются три закона Ньютона.

  • 1. Всякое материальное тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние. Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон называют также законом инерции.
  • 2. Ускорение, приобретаемое телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально массе тела.
  • 3. Силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению.

Второй закон Ньютона нам известен в виде

естествознание классический механика закон

F = m Ч a, или a = F/m,

где ускорение а, получаемое телом под действием силы F, обратно пропорционально массе тела m.

Первый закон можно получить из второго, так как в случае отсутствия воздействия на тело со стороны других сил ускорение также равно нулю. Однако первый закон рассматривается как самостоятельный закон, поскольку он утверждает существование инерциальных систем отсчета. В математической формулировке второй закон Ньютона чаще всего записывается в следующем виде:

где -- результирующий вектор сил, действующих на тело; -- вектор ускорения тела; m -- масса тела.

Третий закон Ньютона уточняет некоторые свойства введёного во втором законе понятия силы. Им постулируется наличие для каждой силы, действующей на первое тело со стороны второго, равной по величине и противоположной по направлению силы, действующей на второе тело со стороны первого. Наличие третьего закона Ньютона обеспечивает выполнение закона сохранения импульса для системы тел.

Закон сохранения импульса

Данный закон является следствием законов Ньютона для замкнутых систем, то есть систем, на которые не действуют внешние силы или действия внешних сил скомпенсированы и результирующая сила равна нулю. С более фундаментальной точки зрения существует взаимосвязь закона сохранения импульса и однородности пространства , выражаемая теоремой Нётер.

Закон сохранения энергии

Закон сохранения энергии является следствием законов Ньютона для замкнутых консервативных систем, то есть систем, в которых действует только консервативные силы. Энергия, отданная одним телом другому, всегда равна энергии, полученной другим телом. Для количественной оценки процесса обмена энергией между взаимодействующими телами в механике вводится понятие работы силы, вызывающей движение. Сила, вызывающая движение тела, совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Как известно, тело массой m, движущееся со скоростью v, обладает кинетической энергией

Потенциальная энергия - это механическая энергия системы тел, которые взаимодействуют посредством силовых полей, например посредством гравитационных сил. Работа, совершаемая этими силами, при перемещении тела из одного положения в другое не зависит от траектории движения, а зависит только от начального и конечного положения тела в силовом поле. Гравитационные силы являются консервативными силами, а потенциальная энергия тела массой m, поднятого на высоту h над поверхностью Земли, равна

Е пот = mgh,

где g - ускорение свободного падения.

Полная механическая энергия равна сумме кинетической и потенциальной энергии.

 

 

Это интересно: