→ Уравнения реакции неорганической химии. Неорганическая химия - это что такое? Неорганическая химия в школьной программе

Уравнения реакции неорганической химии. Неорганическая химия - это что такое? Неорганическая химия в школьной программе

Неорганическая химия - раздел химии, связанный с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Это область охватывает все химические соединения, за исключением органических веществ (класса соединений, в которые входит углерод, за исключением нескольких простейших соединений, обычно относящихся к неорганическим). Различие между органическими и неорганическими соединениями, содержащими углерод, являются по некоторым представлениям произвольными.Неорганическая химия изучает химические элементы и образуемые ими простые и сложные вещества (кроме органических соединений). Обеспечивает создание материалов новейшей техники. Число известных на 2013 г. неорганических веществ приближается к 400 тысячам.

Теоретическим фундаментом неорганической химии является периодический закон и основанная на нём периодическая система Д. И. Менделеева. Важнейшая задача неорганической химии состоит в разработке и научном обосновании способов создания новых материалов с нужными для современной техники свойствами.

В России исследованиями в области неорганической химии занимаются Институт неорганической химии им. А. В. Николаева СО РАН (ИНХ СО РАН, Новосибирск), Институт общей и неорганической химии им. Н. С. Курнакова (ИОНХ РАН, Москва), Институт физико-химических проблем керамических материалов (ИФХПКМ, Москва), Научно-технический центр «Сверхтвердые материалы» (НТЦ СМ, Троицк) и ряд других учреждений. Результаты исследований публикуются в журналах («Журнал неорганической химии» и др.).

История определения

Исторически название неорганическая химия происходит от представления о части химии, которая занимается исследованием элементов, соединений, а также реакций веществ, которые не образованы живыми существами. Однако со времен синтеза мочевины из неорганического соединения цианата аммония (NH 4 OCN), который совершил в 1828 году выдающийся немецкий химик Фридрих Вёлер, стираются границы между веществами неживой и живой природы. Так, живые существа производят много неорганических веществ. С другой стороны, почти все органические соединения можно синтезировать в лаборатории. Однако деление на различные области химии является актуальным и необходимым, как и раньше, поскольку механизмы реакций, структура веществ в неорганической и органической химии различаются. Это позволяет проще систематизировать методы и способы исследования в каждой из отраслей.

Оксиды

Оксид (окисел, окись) - бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй после фтора, поэтому к оксидам относятся почти все соединения химических элементов с кислородом. К исключениям относятся, например, дифторид кислорода OF 2 .

Оксиды - весьма распространённый тип соединений, содержащихся в земной коре и во Вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей.

Оксидами называется класс минералов, представляющих собой соединения металла с кислородом.

Соединения, которые содержат атомы кислорода, соединённые между собой, называются пероксидами (перекисями; содержат цепочку −O−O−), супероксидами (содержат группу О−2) и озонидами (содержат группу О−3). Они не относятся к категории оксидов.

Классификация

В зависимости от химических свойств различают:

Солеобразующие оксиды:

основные оксиды (например, оксид натрия Na 2 O, оксид меди(II) CuO): оксиды металлов, степень окисления которых I-II;

кислотные оксиды (например, оксид серы(VI) SO 3 , оксид азота(IV) NO 2): оксиды металлов со степенью окисления V-VII и оксиды неметаллов;

амфотерные оксиды (например, оксид цинка ZnO, оксид алюминия Al 2 О 3): оксиды металлов со степенью окисления III-IV и исключения (ZnO, BeO, SnO, PbO);

Несолеобразующие оксиды: оксид углерода(II) СО, оксид азота(I) N 2 O, оксид азота(II) NO.

Номенклатура

В соответствии с номенклатурой ИЮПАК, оксиды называют словом «оксид», после которого следует наименование химического элемента в родительном падеже, например: Na 2 O - оксид натрия, Al 2 O 3 - оксид алюминия. Если элемент имеет переменную степень окисления, то в названии оксида указывается его степень окисления римской цифрой в скобках сразу после названия (без пробела). Например, Cu 2 О - оксид меди(I), CuO - оксид меди(II), FeO - оксид железа(II), Fe 2 О 3 - оксид железа(III), Cl 2 O 7 - оксид хлора(VII).

Часто используют и другие наименования оксидов по числу атомов кислорода: если оксид содержит только один атом кислорода, то его называют монооксидом или моноокисью, если два - диоксидом или двуокисью, если три - то триоксидом или триокисью и т. д. Например: монооксид углерода CO, диоксид углерода СО 2 , триоксид серы SO 3 .

Также распространены исторически сложившиеся (тривиальные) названия оксидов, например угарный газ CO, серный ангидрид SO 3 и т. д.

В начале XIX века и ранее тугоплавкие, практически не растворимые в воде оксиды химики называли «землями».

Оксиды с низшими степенями окисления (субоксиды) иногда по старой русской номенклатуре называют закись (англ. аналог - protoxide) и недокись (например, оксид углерода(II), CO - закись углерода; диоксид триуглерода, C 3 O 2 - недокись углерода; оксид азота(I), N 2 O - закись азота; оксид меди(I), Cu 2 O - закись меди). Высшие степени окисления (оксид железа(III), Fe2O3) называют в соответствии с этой номенклатурой окись, а сложные оксиды - закись-окись (Fe 3 O 4 = FeO·Fe 2 O 3 - закись-окись железа, оксид урана(VI)-диурана(V), U 3 O 8 - закись-окись урана). Эта номенклатура, однако, не отличается последовательностью, поэтому такие названия следует рассматривать скорее как традиционные.

Химические свойства

Основные оксиды

1. Основный оксид + cильная кислота → соль + вода

2. Сильноосновный оксид + вода → щелочь

3. Сильноосновный оксид + кислотный оксид → соль

4. Основный оксид + водород → металл + вода

Примечание: металл менее активный, чем алюминий.

Кислотные оксиды

1. Кислотный оксид + вода → кислота

Некоторые оксиды, например SiO 2 , с водой не вступают в реакцию, поэтому их кислоты получают косвенным путём.

2. Кислотный оксид + основный оксид → соль

3. Кислотный оксид + основание → соль + вода

Если кислотный оксид является ангидридом многоосновной кислоты, возможно образование кислых или средних солей:

4. Нелетучий оксид + соль1 → соль2 + летучий оксид

5. Ангидрид кислоты 1 + безводная кислородосодержащая кислота 2 → Ангидрид кислоты 2 + безводная кислородосодержащая кислота 1

Амфотерные оксиды

При взаимодействии с сильной кислотой или кислотным оксидом проявляют основные свойства:

При взаимодействии с сильным основанием или основным оксидом проявляют кислотные свойства:

(в водном растворе)

(при сплавлении)

Получение

1. Взаимодействие простых веществ (за исключением инертных газов, золота и платины) с кислородом:

При горении в кислороде щелочных металлов (кроме лития), а также стронция и бария образуются пероксиды и надпероксиды:

2. Обжиг или горение бинарных соединений в кислороде:

3. Термическое разложение солей:

4. Термическое разложение оснований или кислот:

5. Окисление низших оксидов в высшие и восстановление высших в низшие:

6. Взаимодействие некоторых металлов с водой при высокой температуре:

7. Взаимодействие солей с кислотными оксидами при сжигании кокса с выделением летучего оксида:

8. Взаимодействие металлов с кислотами-оксилителями:

9. При действии водоотнимающих веществ на кислоты и соли:

10. Взаимодействие солей слабых неустойчивых кислот с более сильными кислотами:

Соли

Соли - класс химических соединений, состоящих из катионов и анионов.


В роли катионов в солях могут выступать катион металлов, ониевые катионы


(катионов аммония, фосфония, гидроксония и их органические производные),


комплексные катионы и т.д., в качестве анионов - анионы кислотного остатка различных кислот Бренстеда - как неорганических, так и органических, включая карбанионы, комплексные анионы и т.п.

Типы солей

Особую группу составляют соли органических кислот, свойства которых значительно отличаются от свойств минеральных солей. Некоторые из них можно отнести к особенному классу органических солей, так называемых ионных жидкостей или по-другому «жидких солей», органических солей с температурой плавления ниже 100 °C.

Названия солей

Названия солей образуются из двух слов: название аниона в именительном падеже и название катиона в родительном падеже: - сульфат натрия. Для металлов с переменной степенью окисления её указывают в скобках и без пробела: - сульфат железа(II), - сульфат железа(III).

Названия кислых солей начинаются с приставки «гидро-» (если в соли присутствует один атом водорода) или «дигидро-» (если их два). Например, - гидрокарбонат натрия, - дигидрофосфат натрия.

Названия основных солей содержат приставку «гидроксо-» или «дигидроксо-». Например, - хлорид гидроксомагния, - хлорид дигидроксоалюминия.

В гидратных солях на наличие кристаллической воды указывает приставка «гидрат-». Степень гидратации отражают численной приставкой. Например, - дигидрат хлорида кальция.

На низшую степень окисления кислотообразующего элемента (если степеней окисления больше двух) указывает приставка «гипо-». Приставка «пер-» указывает на высшую степень окисления (для солей кислот с окончаниями «-овая», «-евая», «-ная»). Например: - гипохлорит натрия, - хлорит натрия, - хлорат натрия, - перхлорат натрия.

Методы получения

Существуют различные методы получения солей:

1)Взаимодействие кислот с металлами, основными и амфотерными оксидами / гидроксидами:

2)Взаимодействие кислотных оксидов c щелочами, основными и амфотерными оксидами / гидроксидами:

3)Взаимодействие солей c кислотами, другими солями (если образуется выходящий из сферы реакции продукт):

Взаимодействие простых веществ:

Взаимодействие оснований с неметаллами, например, с галогенами:

Химические свойства

Химические свойства определяются свойствами катионов и анионов, входящих в их состав.

Соли взаимодействуют с кислотами и основаниями, если в результате реакции получается продукт, который выходит из сферы реакции (осадок, газ, мало диссоциирующие вещества, например, вода или другие оксиды):

Соли взаимодействуют с металлами, если свободный металл находится левее металла в составе соли в электрохимическом ряде активности металлов:

Соли взаимодействуют между собой, если продукт реакции выходит из сферы реакции (образуется газ, осадок или вода); в том числе эти реакции могут проходить с изменением степеней окисления атомов реагентов:

Некоторые соли разлагаются при нагревании:

Основание

Основания - класс химических соединений.

Основания (осно́вные гидрокси́ды) - сложные вещества, которые состоят из атомов металла или иона аммония и гидроксогруппы (-OH). В водном растворе диссоциируют с образованием катионов и анионов ОН−.

Название основания обычно состоит из двух слов: «гидроксид металла/аммония». Хорошо растворимые в воде основания называются щелочами.

Согласно протонной теории кислот и оснований, основания - один из основных классов химических соединений, вещества, молекулы которых являются

акцепторами протонов.

В органической химии по традиции основаниями называют также вещества, способные давать аддукты («соли») с сильными кислотами, например, многие алкалоиды описывают как в форме «алкалоид-основание», так и в виде «солей алкалоидов».

Понятие основания в химию было впервые введено французским химиком Гийомом Франсуа Руэлем в 1754 году. Он отметил, что кислоты, известные в те времена как летучие жидкости (например, уксусная или соляная кислоты), превращаются в кристаллические соли только в сочетании с конкретными веществами. Руэль предположил, что такие вещества служат «основаниями» для образования солей в твёрдой форме.

Получение

Взаимодействие сильноосновного оксида с водой позволяет получить сильное основание или щёлочь.

Слабоосновные и амфотерные оксиды с водой не реагируют, поэтому соответствующие им гидроксиды таким способом получить нельзя.

Гидроксиды малоактивных металлов получают при добавлении щелочи к растворам соответствующих солей. Так как растворимость слабоосновных гидроксидов в воде очень мала, гидроксид выпадает из раствора в виде студнеобразной массы.

Также основание можно получить при взаимодействии щелочного или щелочноземельного металла с водой.

Лекция: Классификация химических реакций в неорганической и органической химии

Виды химических реакций в неорганической химии


А) Классификация по количеству начальных веществ:

Разложение – вследствие данной реакции, из одного имеющегося сложного вещества, образуются два или несколько простых, а так же сложных веществ.

Пример: 2Н 2 O 2 → 2Н 2 O + O 2

Соединение – это такая реакция, при которой из двух и более простых, а также сложных веществ, образуется одно, но более сложное.

Пример: 4Al+3O 2 → 2Al 2 O 3

Замещение – это определенная химическая реакция, которая проходит между некоторыми простыми, а так же сложными веществами. Атомы простого вещества, в данной реакции, замещаются на атомы одного из элементов, находящегося в сложном веществе.

Пример: 2КI + Cl2 → 2КCl + I 2

Обмен – это такая реакция, при которой два сложных по строению вещества обмениваются своими частями.

Пример: HCl + KNO 2 → KCl + HNO 2

Б) Классификация по тепловому эффекту:

Экзотермические реакции – это определенные химические реакции, при которых происходит выделение тепла.
Примеры:

S +O 2 → SO 2 + Q

2C 2 H 6 + 7O 2 → 4CO 2 +6H 2 O + Q


Эндотермические реакции – это определенные химические реакции, при которых происходит поглощение тепла. Как правило, это реакции разложения.

Примеры:

CaCO 3 → CaO + CO 2 – Q
2KClO 3 → 2KCl + 3O 2 – Q

Теплота, которая выделяется или поглощается в результате химической реакции, называется тепловым эффектом.


Химические уравнения, в которых указан тепловой эффект реакции, называют термохимическими .


В) Классификация по обратимости:

Обратимые реакции – это реакции, которые протекают при одинаковых условиях во взаимопротивоположных направлениях.

Пример: 3H 2 + N 2 ⇌ 2NH 3

Необратимые реакции – это реакции, которые протекают только в одном направлении, а так же завершающиеся полным расходом всех исходных веществ. При этих реакциях выделяе тся газ, осадок, вода.
Пример: 2KClO 3 → 2KCl + 3O 2

Г) Классификация по изменению степени окисления:

Окислительно - восстановительные реакции – в процессе данных реакций происходит изменение степени окисления.

Пример: Сu + 4HNO 3 → Cu(NO 3) 2 + 2NO 2 + 2H 2 O.

Не окислительно - восстановительные – реакции без изменения степени окисления.

Пример: HNO 3 + KOH → KNO 3 + H 2 O.

Д) Классификация по фазе:

Гомогенные реакции реакции, протекающие в одной фазе, когда исходные вещества и продукты реакции имеют одно агрегатное состояние.

Пример: Н 2 (газ) + Cl 2 (газ) → 2HCL

Гетерогенные реакции – реакции, протекающие на поверхности раздела фаз, при которых продукты реакции и исходные вещества имеют разное агрегатное состояние.
Пример: CuO+ H 2 → Cu+H 2 O

Классификация по использованию катализатора:

Катализатор – вещество, которое ускоряет реакцию. Каталитическая реакция протекает в присутствии катализатора, некаталитическая – без катализатора.
Пример: 2H 2 0 2 MnO 2 2H 2 O + O 2 катализатор MnO 2

Взаимодействие щелочи с кислотой протекает без катализатора.
Пример: КOH + HCl КCl + H 2 O

Ингибиторы – вещества, замедляющие реакцию.
Катализаторы и ингибиторы сами в ходе реакции не расходуются.

Виды химических реакций в органической химии


Замещение – это реакция, в процессе которой происходит замена одного атома/группы атомов, в исходной молекуле, на иные атомы/группы атомов.
Пример: СН 4 + Сl 2 → СН 3 Сl + НСl

Присоединение – это реакции, при которых несколько молекул вещества соединяются в одну. К реакциям присоединения относятся:

  • Гидрирование – реакция, в процессе которой происходит присоединение водорода по кратной связи.

Пример: СН 3 -СН = СН 2 (пропен) + Н 2 → СН 3 -СН 2 -СН 3 (пропан)

    Гидрогалогенирование – реакция, присоединяющая галогенводород.

Пример: СН 2 = СН 2 (этен) + НСl → СН 3 -СН 2 -Сl (хлорэтан)

Алкины реагируют с галогеноводородами (хлороводородом, бромоводородом) так же, как и алкены. Присоединение в химической реакции проходит в 2 стадии, и определяется правилом Марковникова:


При присоединении протонных кислот и воды к несимметричным алкенам и алкинам атом водорода присоединяется к наиболее гидрогенизированному атому углерода.

Механизм данной химической реакции. Образующийся в 1 - ой, быстрой стадии, p- комплекс во 2 - ой медленной стадии постепенно превращается в s-комплекс - карбокатион. В 3 - ей стадии происходит стабилизация карбокатиона – то есть взаимодействие с анионом брома:

И1, И2 - карбокатионы. П1, П2 - бромиды.


Галогенирование – реакция, при которой присоединяется галоген. Галогенированием так же, называют все процессы, в результате которых в органические соединения вводятся атомы галогена. Данное понятие употребляется в "широком смысле". В соответствии с данным понятием, различают следующие химические реакции на основе галогенирования: фторирование, хлорирование, бромирование, йодирование.

Галогенсодержащие органические производные считаются важнейшими соединениями, которые применяются как в органическом синтезе, так и в качестве целевых продуктов. Галогенпроизводные углеводородов, считаются исходными продуктами в большом количестве реакций нуклеофильного замещения. Что касается практического использования соединений, содержащих галоген, то они применяются в виде растворителей, например хлорсодержащие соединения, холодильных агентов - хлорфторпроизводные, фреоны, пестицидов, фармацевтических препаратов, пластификаторов, мономеров для получения пластмасс.


Гидратация – реакции присоединения молекулы воды по кратной связи.

Полимеризация – это особый вид реакции, при которой молекулы вещества, имеющие относительную невеликую молекулярную массу, присоединяются друг к другу, впоследствии образовывая молекулы вещества с высокой молекулярной массой.



В неорганической химии химические реакции классифицируются по разным признакам.

1. По изменению степени окисления на окислительно-восстановительные, идущие с изменением степени окисления элементов и кислотно-основные, которые протекают без изменения степеней окисления.

2. По характеру процесса.

Реакции разложения называют химические реакции, в которых простые молекулы получаются из более сложных.

Реакции соединения называются химические реакции, в которых сложные соединения получаются из нескольких более простых.

Реакции замещения называются химические реакции, в которых атом или группа атомов в молекуле замещаются на другой атом или группу атомов.

Реакции обмена называют химические реакции, протекающие без изменения степени окисления элементов и приводящие к обмену составных частей реагентов.

3. По возможности протекать в обратном направлении на обратимые и необратимые.

Некоторые реакции, как например реакция горения этанола практически необратима, т.е. нельзя создать условия, чтобы она протекала в обратном направлении.

Однако, существует много реакций, которые в зависимости от условий протекания процесса могут протекать как в прямом, так и в обратном направлениях. Реакции способные протекать как в прямом, так и в обратном направлении называются обратимые .

4. По типу разрыва связи – гомолитические (равный разрыв, каждый атом получает по одному электрону)и гетеролитические (неравный разрыв – одному достается пара электронов).

5. По тепловому эффекту экзотермические (выделение тепла) и эндотермические (поглощение тепла).

Реакции соединения, как правило, будут экзотермическими реакциями, а реакции разложения – эндотермическими. Редкое исключение – реакция азота с кислородом эндотермическая N 2 + O 2 = 2NO – Q.

6. По агрегатному состоянию фаз.

Гомогенные (реакция проходит в одной фазе, без границ раздела; реакции в газах или в растворах).

Гетерогенные (реакции, проходящие на границе раздела фаз).

7. По использованию катализатора.

Катализатор – вещество, ускоряющее химическую реакцию, но остающееся химически неизменным.

Каталитические без использования катализатора практически не идут и некаталитические.

Классификация органических реакций

Тип реакции

Радикальные

Нуклеофильные

(N)

Электрофильные (E)

Замещение (S)

Радикальнoе

замещение (S R)

Нуклеофильное замещение (S N)

Электрофильное замещение (S E)

Присоединение (А)

Радикальнoе

присоединение (А R)

Нуклеофильное присоединение (А N)

Электрофильное присоединение (А E)

Отщепление (Е) (элиминирование)

Радикальнoе

отщепление (Е R)

Нуклеофильное отщепление (Е N)

Электрофильное отщепление (Е E)

Электрофильными называют гетеролитические реакции органических соединений с электрофилами – частицами, несущими целый или дробный положительный заряд. Они подразделяются на реакции электрофильного замещения и электрофильного присоединения. Например,

Н 2 С=СН 2 + Вr 2  BrCH 2 – CH 2 Br

Нуклеофильными называют гетеролитические реакции органических соединений с нуклеофилами – частицами, несущими целый или дробный отрицательный заряд. Они подразделяются на реакции нуклеофильного замещения и нуклеофильного присоединения. Например,

CH 3 Br + NaOH  CH 3 OH + NaBr

Радикальными (цепными) называют химические реакции с участием радикалов, например

Справочник содержит 1100 неорганических веществ, для которых приведены уравнения важнейших реакций. Выбор веществ обосновывался их теоретической и лабораторно-промышленной важностью.

Справочник организован по алфавитному принципу химических формул и четко разработанной структуре, снабжен предметным указателем, позволяющим легко найти нужное вещество. Не имеет аналогов в отечественной и зарубежной химической литературе.

Для студентов химических и химико-технологических ВУЗов. Может быть использован преподавателями ВУЗов, аспирантами, научными и инженерно-техническими работниками химической промышленности, а также учителями и учащимися старших классов средней школы.

Al - алюминий.

Белый, легкий, пластичный металл. Пассивируется в воде, концентрированной азотной кислоте и растворе дихромата калия из-за образования устойчивой оксидной пленки; амальгамированный металл реагирует с водой. Реакционноспособный, сильный восстановитель. Проявляет амфотерные свойства; реагирует с разбавленными кислотами и щелочами.

AIN - нитрид алюминия.

Белый, очень твердый, огнеупорный, термически устойчивый. Не реагирует с жидкой водой, полностью гидролизуется водяным паром. Нерастворим в этаноле. Реагирует с кислотами и щелочами, но кислотостоек в компактной форме.

ZnS - сульфид цинка(II).

Белый, аморфный (осажденный из раствора) или кристаллический - кубическая а-модификация и гексагональная B-модификация. Чувствителен к УФ-облучению. В аморфном виде более реакционноспособный. Пептизируется (переходит в коллоидный раствор) при длительной обработке сероводородной водой. Не растворяется в воде, не реагирует со щелочами, гидратом аммиака. Реагирует с сильными кислотами, во влажном состоянии медленно окисляется 02 воздуха.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Реакции неорганических веществ, справочник, Молочко В.А., Андреева Л.Л., Лидин Р.А., 2007 - fileskachat.com, быстрое и бесплатное скачивание.

  • Константы неорганических веществ, Справочник, Лидин Р.А., Андреева Л.Л., Молочко В.А., 2008
  • Химия, Для школьников старших классов и поступающих в ВУЗы, Теоретические основы, Вопросы, Задачи, Тесты, Учебное пособие, Лидин Р.А., Молочко В.А., Андреева Л.Л., 2001

Классификацию химических реакций в неорганической и органической химии осуществляют на основании различных классифицирующих признаков, сведения о которых приведены в таблице ниже.

По изменению степени окисления элементов

Первый признак классификации — по изменению степени окисления элементов, образующих реагенты и продукты.
а) окислительно-восстановительные
б) без изменения степени окисления
Окислительно-восстановительными называют реакции, сопровождающиеся изменением степеней окисления химических элементов, входящих в состав реагентов. К окислительно-восстановительным в неорганической химии относятся все реакции замещения и те реакции разло­жения и соединения, в которых участвует хотя бы одно прос­тое вещество. К реакциям, идущим без изменения степе­ней окисления элементов, образующих реагенты и продукты реакции, относятся все реакции обмена.

По числу и составу реагентов и продуктов

Химические реакции классифицируются по характеру процесса, т.е по числу и составу реагентов и продуктов.

Реакциями соединения называют химические реакции, в результате которых сложные молекулы получаются из нескольких более простых, например:
4Li + O 2 = 2Li 2 O

Реакциями разложения называют химические реакции, в результате которых простые молекулы получаются из более сложных, например:
CaCO 3 = CaO + CO 2

Реакции разложения можно рассматривать как процессы, обратные соединению.

Реакциями замещения называют химические реакции, в результате которых атом или группа атомов в молекуле вещества замещается на другой атом или группу атомов, например:
Fe + 2HCl = FeCl 2 + H 2 

Их отличительный признак - взаимодействие простого вещества со сложным. Такие реакции есть и в органической химии.
Однако понятие «замещение» в органике шире, чем в неорганической химии. Если в молекуле исходного вещества какой-либо атом или функциональная группа заменяются на другой атом или группу, это тоже реакции замещения, хотя с точки зрения неорганической химии процесс выглядит как реакция обмена.
— обмена (в том числе и нейтрализации).
Реакциями обмена называют химические реакции, протекающие без изменения степеней окисления элементов и приводящие к обмену составных частей реагентов, например:
AgNO 3 + KBr = AgBr + KNO 3

По возможности протекать в обратном направлении

По возможности протекать в обратном направлении – обратимые и необратимые.

Обратимыми называют химические реакции, протекающие при данной температуре одновременно в двух противоположных направлениях с соизмеримыми скоростями. При записи уравнений таких реакций знак равенства заменяют противоположно направленными стрелками. Простейшим примером обратимой реакции является синтез аммиака взаимодействием азота и водорода:

N 2 +3H 2 ↔2NH 3

Необратимыми называют реакции, протекающие только в прямом направлении, в результате которых образуются продукты, не взаимодействующие между собой. К необратимым относят химические реакции, в результате которых образуются малодиссоциированные соединения, происходит выделение большого количества энергии, а также те, в которых конечные продукты уходят из сферы реакции в газообразном виде или в виде осадка, например:

HCl + NaOH = NaCl + H2O

2Ca + O 2 = 2CaO

BaBr 2 + Na 2 SO 4 = BaSO 4 ↓ + 2NaBr

По тепловому эффекту

Экзотермическими называют химические реакции, идущие с выделением теплоты. Условное обозначение изменения энтальпии (теплосодержания) ΔH, а теплового эффекта реакции Q. Для экзотермических реакций Q > 0, а ΔH < 0.

Эндотермическими называют химические реакции, идущие с поглощением теплоты. Для эндотермических реакций Q < 0, а ΔH > 0.

Реакции соединения как правило будут реак­циями экзотермическими, а реакции разложения - эндотер­мическими. Редкое исключение - реакция азота с кислородом - эндотермиче­ская:
N2 + О2 → 2NO – Q

По фазе

Гомогенными называют реакции, протекающие в однородной среде (однородные вещества, в одной фазе, например г-г, реакции в растворах).

Гетерогенными называют реакции, протекающие в неоднородной среде, на поверхности соприкосновения реагирующих веществ, находящихся в разных фазах, например, твердой и газообразной, жидкой и газообразной, в двух несмешивающихся жидкостях.

По использованию катализатора

Катализатор – вещество ускоряющее химическую реакцию.

Каталитические реакции протекают только в присутствии катализатора (в том числе и ферментативные).

Некаталитические реакции идут в отсутствие катализатора.

По типу разрыва связей

По типу разрыва химической связи в исходной молекуле различают гомолитические и гетеролитические реакции.

Гомолитическими называются реакции, при которых в результате разрыва связей образуются частицы, имеющие неспаренный электрон - свободные радикалы.

Гетеролитическими называют реакции, протекающие через образование ионных частиц - катионов и анионов.

  • гомолитические (равный разрыв, каждый атом по 1 электрону получает)
  • гетеролитический (неравный разрыв – одному достается пара электронов)

Радикальными (цепными) называют химические реакции с участием радикалов, например:

CH 4 + Cl 2 hv →CH 3 Cl + HCl

Ионными называют химические реакции, протекающие с участием ионов, например:

KCl + AgNO 3 = KNO 3 + AgCl↓

Электрофильными называют гетеролитические реакции органических соединений с электрофилами - частицами, несущими целый или дробный положительный заряд. Они подразделяются на реакции электрофильного замещения и электрофильного присоединения, например:

C 6 H 6 + Cl 2 FeCl3 → C 6 H 5 Cl + HCl

H 2 C =CH 2 + Br 2 → BrCH 2 –CH 2 Br

Нуклеофильными называют гетеролитические реакции органических соединений с нуклеофилами - частицами, несущими целый или дробный отрицательный заряд. Они подразделяются на реакции нуклеофильного замещения и нуклеофильного присоединения, например:

CH 3 Br + NaOH → CH 3 OH + NaBr

CH 3 C(O)H + C 2 H 5 OH → CH 3 CH(OC 2 H 5) 2 + H 2 O

Классификация органических реакций

Классификация органических реакций приведена в таблице:

 

 

Это интересно: