→ Методическая разработка открытого урока по музыкальной литературе «Тембры музыкальных инструментов симфонического оркестра. Тембр в музыке – это что за категория? Для чего она существует? Так выглядят некоторые звуковые волны

Методическая разработка открытого урока по музыкальной литературе «Тембры музыкальных инструментов симфонического оркестра. Тембр в музыке – это что за категория? Для чего она существует? Так выглядят некоторые звуковые волны

(Презентация к уроку "Тембры- музыкальные краски")

«Тембры - музыкальные краски»

(разработка урока для 6 класса)

Цель : Формирование потребности в общении с музыкой через художественно-творческую деятельность.

Задачи:

Образовательная - Познакомить с многообразием тембров симфонического оркестра

Воспитательная - Воспитывать музыкальный вкус, исполнительскую культуру, культуру слушания; формировать чувство личной ответственности за результат совместной работы

Развивающая - Развивать умения, навыки, способы музыкально-творческой деятельности (хоровое пение, вокальная и инструментальная импровизация)

Проблема урока: Почему тембры в музыке можно назвать музыкальными красками?

Тип урока : Урок открытия нового знания

Методы обучения:

Словесно-индуктивный (беседа, диалог)

Метод «музицирования»

Метод «соучастия»

Метод «погружения»

Формы обучения: коллективная, групповая

Материал к уроку: Иоганн Штраус «Вальс розы юга»»; Н.А. Римский-Корсаков Симфоническая сюита «Шехеразада»; И. Штраус «Полька - пиццикато»; П.И. Чайковский «Неаполитанский танец» из балета «Лебединое озеро»; И.С. Бах Сюита № 2 «Шутка»; Г.А. Струве « С нами друг!»; репродукция картины А.Лямина «Вальс»; стихотворение японского поэта Хитакара Хакусю «Тон.тон.тон»

Оборудование урока: компьютер, проектор, экран, музыкальные инструменты (фортепиано, ксилофон, металлофон, барабан, дарбука, бубенчики, клависы, коробочки, маракасы, треугольник), 3 MP3-плеер, цветные карандаши, карточки с музыкальными инструментами

Термины, понятия: пиццикато, образ, лад, темп, динамика, тембр

Ход урока.

Введение в урок:

Музыкальное приветствие.

У: Ребята, мы только что поприветствовали друг друга. Как прозвучало наше приветствие?

Д: Радостно, светло и красиво.

У: А если мысленно взять краски, кисти и нарисовать приветствие как картину - какие краски в ней будут преобладать?

Д: желтые, красные...

У: Посмотрите вокруг - мир полон красок, он разноцветный. Вспомните весенний сад, летние луга, осенний лес, зимнее сверкание снега. Да, нас окружает красочный мир, художники научились выражать его на холсте - с помощью красок, а в музыке? Что будет красками в музыке, что поможет нам сыграть и спеть многоцветный мир?

СЛАЙД №1

Тема нашего урока: «Тембры - музыкальные краски».

Каждый урок предполагает повторение известного, открытие нового. Что бы вы хотели узнать нового, чему научиться?

Д: Почему тембр называют музыкальными красками, узнать, как звучат разные инструменты.

У: Это и будет целью нашего урока.

Давайте определим, какие задачи нам предстоит решать на уроке, чтобы наша цель была достигнута?

Д: Нужно слушать музыкальные произведения, постараться услышать, как тембр музыкальных инструментов делает их разноцветными; нужно учиться сопоставлять картины художников и музыкальные произведения.

У: Прекрасно, этому мы и посвятим наш урок. Вы хорошие ученики, и мы завершили ту часть урока, где вы были просто учениками.

А сейчас мы с вами преобразимся: есть в мире очень редкие профессии, благодаря которым из века в век хранится и передается следующим поколениям культура.

Давайте познакомимся:

Пред вами - реставраторы - это группа № 1.

Группа № 2 - искусствоведы.

Группа № 3 - музыканты из симфонического оркестра.

Группа № 4 - это зрители, которые по абонементу пришли в филармонию на умную встречу, посвященную тембру в музыке.

Каждая группа выполнит очень важное задание. А я выступлю в роли старшего ассистента, сопровождающего исследования групп, в роли модератора (ведущей) музыкального лектория и в роли дирижера.

(дети получают карточки с заданием, в течении 3-4 минут отвечают на вопросы)

Задание группе № 1:

Уважаемые реставраторы! Произошло печальное событие: картина современного художника Алексея Лямина потеряла краски и название. Пожалуйста, восстановите то и другое.

Что изменилось в картине после возвращения цвета и названия?

Ответ начните так…

«Мы рассмотрели картину художника Алексея Лямина и решили, что в ней должны быть___________________________________________________________________

цвета, потому что________________________________________________________

______________________________________________________________________.

Когда картина приобрела цвет, мы почувствовали, что она _____________________

___________________________________________________________________________________________________________________________________________________________________________________________________________________»

Задание группе № 2:

Уважаемые искусствоведы! Рассмотрите внимательно картину художника Алексея Лямина прослушайте музыкальное произведение в исполнении симфонического оркестра. Что объединяет произведение музыки и произведение живописи? Чем они различаются?

(СЛУШАЮТ ЗАПИСЬ В НАУШНИКАХ) И. Штраус "Вальс"

Задание группе № 3:

Уважаемые музыканты! Рассмотрите фотографию симфонического оркестра. Подготовьтесь рассказать всем, что такое - симфонический оркестр. Какие инструменты звучат в симфоническом оркестре? Распределите инструменты по группам.

Приготовьтесь рассказать, по какому принципу вы объединили их в группы.

Расположите инструменты так, как они находятся в оркестре. Почему именно такое место занимают инструменты в оркестре?

Задание группе №4

Уважаемые зрители! Мы уже знаем, что музыка и живопись созвучны. Но как строится музыкальный рисунок поэтического произведения, особенно того, в котором нет рифмы? Давайте попытаемся уловить музыкальный ритм и поиграть с тембром голоса, читая стихи японского поэта Хитакари Хакосю. Каждый из вас - имеет свой тембр голоса, давайте составим оркестр голосов.

Прочитайте ритмично стихотворение, подбирая тембр голоса.

А теперь - слово юным хранителям культуры!

СЛАЙД №2

У: Слово реставраторам:

(в это время на экране - слайд картины). Дети отвечают на вопрос.

У: ВЫВОД. Т.о вы почувствовали, что картина по-новому зазвучала.

СЛАЙД №3

У: Слово вам, искусствоведы:

В это время на экране появляется картина в цвете и звучит музыка вальса. Дети отвечают на вопросы.

У: Подводя итог вашей работы можно сказать, что в музыке и живописи присутствуют общие средства выразительности.

У: Слово вам, музыканты!

Молодцы, каждая группа очень хорошо справилась с заданием!

А теперь настало время посетить наш музыкальный лекторий. Тема нашего разговора - тембры музыкальных инструментов.

Итак, звучит королева музыки - скрипка.

СЛАЙД №4

Слушание отрывка из симфонической сюиты Н.А. Римский - Корсаков «Шезеразада»

Д: плавно, певуче, нежно…

У: В следующем музыкальном отрывке вы услышите звучание не только скрипки, но и других музыкальных инструментов. Обратите внимание, изменился ли звук у скрипки?

Слушание отрывка из музыкального произведения И. Штрауса «Полька-пиццикато»

Д: изменился

У: Чем вызвана другая окраска звука?

Д: от способа извлечения.

У: Такой способ извлечения называется пиццикато. (НА ЭКРАНЕ)

СЛАЙД №5

У: А теперь познакомимся с тембрами духовых инструментов. В средние века этот инструмент сопровождал празднества и торжественные обряды, созывал войско на бой. Как вы думаете, о каком инструменте идет речь? Посмотрите на экран.

Д: это труба.

Слушание отрывка П.И. Чайковского «Неаполитанский танец»

из балета «Лебединое озеро»

У: Подберите прилагательные, характеризующие звучание трубы.

Д: Звук - яркий, далеко летящий, праздничный, торжественный.

У: Посмотрите: у меня в руках - один из самых известных духовых инструментов: флейта. Послушайте, как она звучит (учитель играет на флейте). Это инструмент для начинающих музыкантов, а на экране вы видите флейту симфонического оркестра. Обратите внимание на звучание флейты.

И.С. Бах «Шутка из Сюиты №2

У: Как звучала флейта?

Д: (ответы детей)

У: Спасибо за активное и творческое участие в нашем лектории, и мы перемещаемся на сцену: теперь мы - оркестр, и у нас репетиция одного из фрагментов будущего лектория: нам нужно совместить тембр голоса и тембр музыкальных инструментов. У нас молодежный оркестр, и поэтому мы очень любим ритм, а, значит, и ударные инструменты. На столе лежат ударные музыкальные инструменты - выберите тот инструмент, которые вам понравился. У каждого из них - свой тембр: послушайте выбранный инструмент, как он звучит?

СЛАЙД №7

У: Теперь я прошу показать выполненную работу участникам группы № 4.

У: Ребята будьте внимательны, сейчас взрослые участники будут читать текст стихотворения, а задача нашего оркестра - подобрать тембр того или иного музыкального инструмента к поэтическому образу стихотворения.

ВЗРОСЛЫЕ ЧИТАЮТ.

У: Сколько поэтических образов вы можете выделить?

Д: кленовый лист, горный ветер, лунный свет.

У: Они одинаковые по звучанию или разные? Какие инструменты лучше всего передадут образ кленового листа? (маракасы, пружинка)

Горного ветра? (тарелки)

Лунного света? (металлофон, треугольник)

У: А теперь попробуем вместе: взрослые читают, а мы озвучиваем эти строки.

(ДИРИЖИРУЮ)

У: Спасибо. У нас получился хороший творческий коллектив.

Как вы думаете, нам удалось совместить тембр голоса и тембр музыкальных инструментов?

(взрослые спасибо, садятся на места)

У: Создавая и представляя разноцветные картины под влиянием тембра голоса и тембра инструментов, можем ли мы сказать что тембр - это краски в музыке?

Спасибо за умные ответы, положите инструменты и присаживайтесь на свое место.

Что является самым важным для оркестра?

Профессионализм и талант музыкантов, сплоченность, сотрудничество.

У: В начале урока вы дали определение, что такое оркестр. Вспомните свои ощущения при работе в оркестре, и одним словом скажите: оркестр - это…..

У: Как вы думаете, останутся ли важными такие качества как сотворчество, сплоченность, дружба, если мы создадим оркестр, только из голосов - хор? А как с помощью тембра наших голосов передать радость от того что рядом есть настоящие друзья, что вместе мы можем сделать много-много добрых дел?

Д: Спеть вместе песню!

СЛАЙД №8

Исполнение песни «С нами друг!» Г.А. Струве

Тембр того или иного музыкального инструмента определяется материалом, формой, конструкцией и условиями колебания его вибратора, различными свойствами его резонатора , а также акустикой того помещения, в котором данный инструмент звучит. В формировании тембра каждого конкретного звука ключевое значение имеют его обертоны и их соотношение по высоте и громкости, шумовые призвуки, параметры атаки (начального импульса звукоизвлечения), форманты, характеристики вибрато и другие факторы.

При восприятии тембров обычно возникают различные ассоциации: тембральную специфику звука сравнивают с органолептическими ощущениями от тех или иных предметов и явлений, например, звуки называют яркими , блестящими , матовыми , тёплыми , холодными , глубокими , полными , резкими , насыщенными , сочными , металлическими , стеклянными ; применяются и собственно слуховые определения (например, звонкие , глухие , шумные ).

Научно-обоснованная типология тембра ещё не сложилась. Установлено, что тембровый слух имеет зонную природу.

Тембр используется как важное средство музыкальной выразительности: при помощи тембра можно выделить тот или иной компонент музыкального целого, усилить или ослабить контрасты; изменение тембров - один из элементов музыкальной драматургии.

Весьма обширные банки новых (в основном - искусственно синтезированных) тембров созданы сегодня в области электронной музыки .

См. также

Литература

  • Hазайкинский Е. , Paгс Ю. , Восприятие музыкальных тембров и значение отдельных гармоник звука, в кн.: Применение акустических методов исследования в музыкознании, М., 1964.
  • Гарбузов Н. , Натуральные призвуки и их гармоническое значение, в кн.: Сборник работ комиссии по музыкальной акустике. Труды ГИМНа, вып. 1, М., 1925.
  • Гарбузов Н. , Зонная природа тембрового слуха, М., 1956.
  • Володин А. , Роль гармонического спектра в восприятии высоты и тембра звука, в кн.: Музыкальное искусство и наука, вып 1, M., 1970.

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Тембр" в других словарях:

    Тембр, а [тэ] … Русское словесное ударение

    тембр - тембр, а … Русский орфографический словарь

    тембр - тембр/ … Морфемно-орфографический словарь

    - (фр.). Оттенок звука одного и того же тона на различных голосах или инструментах. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТЕМБР оттенок звука одного и того же тона на различных голосах или инструментах.… … Словарь иностранных слов русского языка

    - [тэ], а; м. [франц. timbre] Характерная окраска звука, сообщаемая ему обертонами, призвуками, по которой различаются друг от друга звучания одной и той же высоты. Приятный, низкий т. Различные тембры. Т. голоса, инструмента. ◁ Тембровый, ая, ое.… … Энциклопедический словарь

    - [тэмбр], тембра, муж. (франц. timbre). Характерная окраска, сообщаемая звуку того или иного инструмента или голоса обертонами, призвуками. Мягкий тембр. Резкий тембр. Виолончельный, скрипичный тембр. Гласные звуки речи отличаются между собой по… … Толковый словарь Ушакова

    тембр - субъективно воспринимаемая особенность звука в виде его окраски, связанная с одновременным воздействием разночастотных звуковых колебаний, входящих в состав сложного звука. Словарь практического психолога. М.: АСТ, Харвест. С. Ю. Головин. 1998.… … Большая психологическая энциклопедия

    тембр - Определение, обычно используемое в психоакустике. Тембр это атрибут слухового ощущения, в определениях которого слушающий может судить о том, в какой степени различаются два звука, представленные аналогичным образом и имеющие одинаковую громкость … Справочник технического переводчика

    - (франц. timbre) ..1) в фонетике окраска звука, определяемая положением формант в частотном спектре звука2)] В музыке качество звука (его окраска), позволяющее различать звуки одинаковой высоты, исполненные на различных инструментах или различными … Большой Энциклопедический словарь

    ТЕМБР - ТЕМБР. Качественная характеристика или специфическая окраска звука, в физическом смысле представляющая собой определенное сочетание тонов. Т. характерен для музыкальных звуков, для звуков человеческой речи. Существующие языки отличаются по Т. как … Новый словарь методических терминов и понятий (теория и практика обучения языкам)

    ТЕМБР - ТЕМБР, качество звука, позволяющее при одной и той же высоте различать звуки отдельных музыкальных инструментов, звуки голоса разных людей и т. д. Тембр обусловлен наличием в составе звука обертонов и определяется относительной интенсивностью… … Большая медицинская энциклопедия

Книги

  • Комплект таблиц. Физика. Механические волны. Акустика (8 таблиц) , . Учебный альбом из 8 листов. Артикул - 5-8665-008. Волновой процесс. Продольные волны. Поперечные волны. Периодические волны. Отражение волн. Стоячие волны. Звуковые волны. Высота звука.…

ВЫРАЗИТЕЛЬНЫЕ СРЕДСТВА МУЗЫКИ

Тембр

Искусство сочетания оркестровых
звучностей есть одна из сторон
души самого сочинения.
Н. Римский-Корсаков

Музыкальные тембры нередко сравнивают с красками в живописи. Подобно краскам, выражающим цветовое богатство окружающего мира, создающим колорит произведения искусства и его настроение, музыкальные тембры также передают многоликость мира, его образы и эмоциональные состояния. Музыка вообще неотделима от тембра, в котором она звучит. Поет ли человеческий голос или пастушья свирель, слышится напев скрипки или переливы арфы - любое из этих звучаний входит в многоцветную палитру тембровых воплощений музыки. Музыка как раз и состоит из разнообразия таких воплощений, и в каждом из них угадывается его собственная душа, неповторимый облик и характер. Поэтому никогда композиторы не создают такую музыку, которая может быть предназначена для любого тембра; каждое, даже самое маленькое, произведение непременно содержит указание на инструмент, который должен ее исполнять.

Например, каждому музыканту известно, что скрипке присуща особая певучесть, поэтому ей нередко поручаются мелодии плавного, песенного характера, обладающие особой закругленностью линий.

Не менее известна и виртуозность скрипки, ее способность исполнять самые стремительные мелодии с необычайной легкостью и блеском. Эта способность позволяет многим композиторам создавать для скрипки не только виртуозные пьесы, но использовать ее (один из самых «музыкальных» инструментов) для передачи звуков отнюдь не музыкальной природы! Среди примеров подобной роли скрипки - «Полет Шмеля» из оперы Н. Римского-Корсакова «Сказка о царе Салтане».

Рассерженный Шмель, готовясь ужалить Бабариху, совершает свой знаменитый полет. Звук этого полета, который музыка воспроизводит с изобразительной точностью и огромным остроумием, создается мелодией скрипки, столь стремительной, что у слушателя действительно остается впечатление грозного шмелиного жужжания.

Необыкновенная теплота и выразительность виолончели сближает ее интонацию с живым голосом - глубоким, волнующе-эмоциональным. Поэтому в музыке нередки случаи, когда вокальные произведения звучат в переложении для виолончели, поражая естественностью тембра и дыхания. С. Рахманинов. Вокализ (в переложении для виолончели).

Там, где требуются легкость, изящество и грация, царит флейта. Изысканность и прозрачность тембра в сочетании с присущим ей высоким регистром придают флейте и трогательную выразительность (как в «Мелодии» из оперы «Орфей и Эвридика»), и грациозное остроумие. Прелестная «Шутка» из Сюиты № 2 для оркестра - пример такого изящно-юмористического звучания флейты.

Таковы характеристики лишь нескольких инструментов, входящих в обширное семейство разнообразных тембровых звучаний музыки. Разумеется, и эти и другие инструменты могут использоваться в «чистом» виде: практически для каждого из них созданы специальные концерты, сонаты и пьесы. Широко применяются и соло различных инструментов, входящих в многозвучные оркестровые сочинения. В таких фрагментах солирующие инструменты еще ярче обнаруживают свои выразительные возможности, то просто пленяя красотой тембра, то создавая контраст различным оркестровым группам, но чаще всего - участвуя в общем потоке музыкального движения, где сопоставления и переплетения тембров образуют картину поразительного звукового богатства. Ведь именно сочетания тембров придают музыке такую выразительность и рельефность, делают доступной передачу практически любого образа, картины или настроения. Это всегда чувствовали большие мастера оркестра, с необыкновенной тщательностью, создававшие свои партитуры, использовавшие все выразительные возможности музыкальных инструментов. Выдающиеся композиторы блестяще владели оркестровкой, справедливо считая ее важнейшей носительницей музыкальной образности.

История симфонического оркестра насчитывает более трех столетий. За это время был постепенно сформирован тот инструментальный состав, которым пользуются и современные композиторы. В нем не только отдельные тембры, но и каждая оркестровая группа приобрела собственные выразительные и технические возможности, так что можно с уверенностью сказать, что оркестр был и остается основным инструментом для воплощения музыкальных замыслов.

Современный симфонический оркестр включает четыре группы инструментов:
1) струнные смычковые (скрипки, альты, виолончели, контрабасы);
2) деревянные духовые (флейты, гобои, кларнеты, фаготы);
3) медные духовые (трубы, валторны, тромбоны, туба);
4) ударные и клавишные (литавры, колокольчики, челеста, барабаны, тарелки и т. д.).

Эти четыре группы при условии их умелого использования, выразительного и красочного сочетания способны создавать подлинные музыкальные чудеса, поражал слушателей то прозрачностью, то плотностью звучания, то необыкновенной силой, то еле уловимым трепетом – всеми тончайшими и разнообразнейшими оттенками, которые делают оркестр одним из замечательных достижений человеческой культуры.

Выразительность музыкальных тембров с особенной очевидностью проявляет себя в произведениях, связанных с их конкретной изобразительностью. Еще раз обратимся к музыкальной сказке Н. Римского-Корсакова – опере «Сказка о царе Салтане», ибо где, как не в сказочно-фантастической музыке, можно «услышать» и картины природы, и различные чудеса, представленные в волшебных звуках оркестра.

Вступление к последней картине оперы называется «Три чуда». Эти три чуда мы помним еще по сказке А. Пушкина, где дано описание города Леденца – царства Гвидона.

Остров на море лежит,
Град на острове стоит,
С златоглавыми церквами,
С теремами и садами;
Ель растет перед дворцом,
А под ней хрустальный дом:
Белка в нем живет ручная,
Да чудесница какая!
Белка песенки поет
Да орешки всё грызет;
А орешки не простые,
Скорлупы-то золотые.
Ядра - чистый изумруд;
Белку холят, берегут.
Там еще другое диво:
Море вздуется бурливо,
Закипит, подымет вой,
Хлынет на берег пустой,
Расплеснется в скором беге,
И очутятся на бреге,
В чешуе, как жар горя,
Тридцать три богатыря,
Все красавцы удалые,
Великаны молодые,
Все равны, как на подбор -
С ними дядька Черномор...
А у князя женка есть,
Что не можно глаз отвесть:
Днем свет божий затмевает,
Ночью землю освещает;
Месяц под косой блестит,
А во лбу звезда горит.

Эти строки из пушкинской «Сказки о царе Салтане» составляют главное содержание музыки Н. Римского-Корсакова, где первое из трех чудес - Белка, грызущая орешки и поющая свою беззаботную песенку, второе – тридцать три богатыря, являющиеся из волн бушующего моря, и третье, самое чудесное из чудес,- прекрасная Царевна Лебедь.

Музыкальная характеристика Белки, включающая два звуковых эпизода, поручена ксилофону и флейте-пикколо. Обратите внимание на щелкающий характер звучания ксилофона, так точно воспроизводящего раскалывание золотых орешков, и на свистящий тембр флейты-пикколо, придающий песенке Белки характер насвистывания. Однако только этими звуковыми штрихами не исчерпывается все богатство представлений о «первом чуде». Второе проведение мелодии обогащается челестой - одним из самых «сказочных» инструментов,- рисующей образ хрустального дома, в котором живет Белка.

Музыка «второго чуда» - богатырей - нарастает постепенно. В ней слышится и рокот разбушевавшейся морской стихии, и завывание ветра. Этот звуковой фон, на котором выступают богатыри, создается различными группами инструментов, рисующих образ сильный, могучий, несокрушимый.

Богатыри предстают в тембровой характеристике медных духовых - самых мощных инструментов симфонического оркестра.

Наконец, «третье чудо» является нам в сопровождении арфы - нежного и пленительного инструмента, передающего плавное скольжение прекрасной птицы по глади ночного моря, освещенного луной. Пение Лебедь-птицы поручено солирующему гобою - инструменту, напоминающему своим звучанием голос водяной птицы. Ведь Лебедь еще не воплотилась в Царевну, первое ее появление совершается в облике величественной, царственной птицы. Постепенно мелодия Лебеди преобразуется. При последнем проведении темы Лебедь-птица превращается в Царевну, и это волшебное превращение вызывает у Гвидона такой восторг, такое беспредельное восхищение, что кульминация эпизода становится подлинным торжеством всего мыслимого света и красоты. Оркестр в этот момент достигает высшей полноты и яркости, в общем потоке звучания выделяются тембры медных духовых, ведущих свою торжественную мелодию.

«Три чуда» Н. Римского-Корсакова открывают нам неисчерпаемые чудеса музыкальных тембров. Оркестр в этом произведении достиг такой живописности, такой неслыханной красочности, что становятся попятными безграничные возможности музыки в передаче всего, что в окружающем мире достойно такой передачи.

Однако важно подчеркнуть и то, что музыка творит и свою собственную красоту, как творят ее живопись, архитектура или поэзия. Эта красота, может быть, не выше и не лучше красоты реального мира, но она существует и, воплощенная в чуде симфонического оркестра, обнаруживает перед нами еще одну тайну музыки, разгадку которой следует искать в пленительном разнообразии ее звучаний.

Вопросы и задания:
1. Почему музыкальные тембры сравнивают с красками в живописи?
2. Может ли тембр придать музыкальному звучанию характерность и неповторимость? Назови известные тебе примеры.
3. Можно ли, по-твоему, мелодию, написанную для одного инструмента, поручить другому? Если да, то назови варианты возможных замен.
4. В каких музыкальных жанрах непременно используется оркестр?
5. Какой из музыкальных инструментов по своим возможностям ближе всего к оркестру?
6. Назови свои любимые музыкальные инструменты. Объясни, почему ты выбрал именно их тембры.

Презентация

В комплекте:
1. Презентация - 19 слайдов, ppsx;
2. Звуки музыки:
Рахманинов. Вокализ. Виолончель, mp3;
Бах. «Скерцо» из Сюиты для флейты и струнного оркестра №2 , mp3;
Римский-Корсаков. Белка, из оперы «Сказка о царе Салтане», mp3;
Римский-Корсаков. 33 богатыря, из оперы «Сказка о царе Салтане», mp3;
Римский-Корсаков. Царевна Лебедь, из оперы «Сказка о царе Салтане», mp3;
Римский-Корсаков. Шахеразада. Фрагмент, mp3;
Римский-Корсаков. Полет шмеля, из оперы «Сказка о царе Салтане», mp3;
3. Сопровождающая статья, docx.

Это краски, которые мы слышим.

Посмотрите на любую картину или фотографию. Но никакой картины не получилось бы, если бы вся она была написана одной и той же краской, без оттенков.
Всмотритесь, сколько их, этих говорящих оттенков.
Десятки оттенков одного цвета. Есть они и у звука.
Одну и ту же ноту, звук, одинаковый по высоте, могут сыграть разные музыкальные инструменты. И хотя высота звука совершенно одинаковая, мы узнаем то голос скрипки, то голос флейты, то голос трубы, то человеческий голос.
Как это у нас получается?

Наш слух в чуткости не уступает зрению. Даже самый маленький ребенок среди многих голосов сразу узнает голос мамы и не спутает его с голосом бабушки. По голосу в телефонной трубке мы узнаем друзей и знакомых. Вы, наверное, сразу узнаёте по первым звукам голоса любимых артистов, певцов. И все вместе мы веселимся, угадывая их голоса в шутливом передразнивании артиста-пародиста. Чтобы добиться похожести, он меняет окраску голоса, тембр.
И разные музыкальные инструменты мы узнаем потому, что у каждого из них есть своя окраска звука. Звук может быть одной высоты, но, то с присвистом, то чуть звенящий, то, как бы гладкий, а то шероховатый. Струна звучит иначе, чем металлическая пластина, а деревянная трубка не так, как медная труба. Ведь у каждого звука есть призвуки. Вот эти оттенки - призвуки и меняют «цвет» звука. Окраска звука - это и есть тембр. И у каждого музыкального инструмента он свой.
ТЕМБР - важное средство художественной выразительности. Одна и та же музыкальная мысль в зависимости от тембрового воплощения может звучать с различной степенью яркости, блеска, мягкости, нежности, решительности, суровости, строгости и т.п. Тем самым тембр усиливает эмоциональное воздействие музыки, помогает осознавать её смысловые оттенки и в конечном итоге содействует более глубокому раскрытию художественного образа.
Изменение тембра, широко применяемое в инструментальных сочинениях, нередко становится важным фактором музыкальной выразительности.
Исходной классификацией тембров оркестровых инструментов является деление их на тембры чистые (простые) и смешанные (сложные).
Тембр чистый (простой) - тембр солирующих инструментов, а также все унисонные сочетания тождественных инструментов. Чистый тембр используется как в одноголосии, так и в многоголосии (например, ансамбли аккордеонов или баянов, домр или балалаек).
Тембр смешанный (сложный) - результат сочетаний различных инструментов. Используется в одноголосии и многоголосии. Такие сочетания применяются в целях изменения фонических качеств голосов и ансамблей и вызываются выразительными или формообразующими факторами.
В различных составах народного оркестра наибольшая слитность обнаруживается в ансамблях тождественных инструментов, а также инструментов - представителей одного семейства. С группой домр наиболее органично сливаются балалайки, потому что исполнительские приемы на домрах, балалайках, а также на ударных инструментах опираются на общие принципы звукоизвлечения: короткие звуки исполняются ударом (щипком), а долгие - посредством тремоло.
С баянами и аккордеонами очень хорошо сливаются духовые инструменты (флейты, гобои). Тембровое многообразие звучания аккордеона (баяна) обусловлено наличием регистров. Некоторые из них получили названия, аналогичные тем или иным инструментам симфонического оркестра: кларнет, фагот, орган, челеста, гобой.
Самая далёкая степень тембрового родства и слитности звучания имеет место при соединении духовых и ударных инструментов.
ТЕМБРОВЫЕ СООТНОШЕНИЯ оркестровых инструментов и ансамблей - понятие, определяющее степень их слитности и контраста при одновременном звучании.

  1. Тембр ​


    Самым сложным субьективно ощущаемым параметром является тембр. С определением этого термина возникают сложности, сопоставимые с определением понятия "жизнь": все понимают, что это такое, однако над научным определением наука бьется уже несколько столетий. Аналогично с термином "тембр": всем ясно, о чем идет речь, когда говорят "красивый тембр голоса", "глухой тембр инструмента" и т. д., но… О тембре нельзя сказать "больше-меньше", "выше-ниже", для его описания используются десятки слов: сухой, звонкий, мягкий, резкий, яркий и т. д. (О терминах для описания тембра поговорим отдельно).

    Тембр (timbre-фр.) означает "качество тона", "окраску тона" (tone quality).

  2. Тембр и акустические характеристики звука
    Современные компьютерные технологии позволяют выполнить детальный анализ временной структуры любого музыкального сигнала - это может сделать практически любой музыкальный редактор, например, Sound Forge, Wave Lab, SpectroLab и др. Примеры временной структуры (осциллограмм) звуков одной высоты (нота "до" первой октавы), создаваемых различными инструментами (орган, скрипка).
    Как видно из представленных волновых форм (т. е. зависимости изменения звукового давления от времени), в каждом из этих звуков можно выделить три фазы: атаку звука (процесс установления), стационарную часть, процесс спада. В различных инструментах, в зависимости от используемых в них способов звукообразования, временные интервалы этих фаз разные - это видно на рисунке.

    У ударных и щипковых инструментов, например гитары, короткий временной отрезок стационарной фазы и атаки и длинный по времени - фазы затухания. В звуке органной трубы можно видеть достаточно длинный отрезок стационарной фазы и короткий период затухания и т. д. Если представить отрезок стационарной части звучания более растянутым во времени, то можно отчетливо видеть периодическую структуру звука. Эта периодичность является принципиально важной для определения музыкальной высоты тона, поскольку слуховая система только для периодических сигналов может определить высоту, а непериодические сигналы воспринимаются ею как шумовые.

    Как утверждает классическая теория, развиваемая, начиная с Гельмгольца почти все последующие сто лет, восприятие тембра зависит от спектральной структуры звука, то есть от состава обертонов и соотношения их амплитуд. Позволю себе напомнить, что обертоны - это все составляющие спектра выше фундаментальной частоты, а обертоны, частоты которых находятся в целочисленных соотношениях с основным тоном, называются гармониками .
    Как известно, для того, чтобы получить амплитудный и фазовый спектр, необходимо выполнить преобразование Фурье от временной функции (t), т. е. зависимости звукового давления р от времени t.
    С помощью преобразования Фурье любой временной сигнал можно представить в виде суммы (или интеграла) составляющих его простых гармонических (синусоидальных) сигналов, а амплитуды и фазы этих составляющих образуют соответственно амплитудный и фазовый спектры.

    С помощью созданных за последние десятилетия цифровых алгоритмов быстрого преобразования Фурье (БПФ или FFT), выполнить операцию по определению спектров можно также практически в любой программе обработки звука. Например, программа SpectroLab вообще является цифровым анализатором, позволяющим построить амплитудный и фазовый спектр музыкального сигнала в различной форме. Формы представления спектра могут быть различными, хотя представляют они одни и те же результаты расчетов.

    На рисунке представлены в виде АЧХ амплитудные спектры различных музыкальных инструментов (осциллограммы которых были показаны на рисунке ранее). АЧХ представляет здесь зависимость амплитуд обертонов в виде уровня звукового давления в дБ, от частот.

    Иногда спектр представляют в виде дискретного набора обертонов с разными амплитудами. Спектры могут быть представлены в виде спектрограмм, где по вертикальной оси отложена частота, по горизонтальной - время, а амплитуда представлена интенсивностью цвета.

    Кроме того, существует форма представления в виде трехмерного (кумулятивного) спектра, о котором будет сказано далее.
    Для построения указанных на предыдущем рисунке спектров, в стационарной части осциллограммы выделяется некоторый временной отрезок, и проводится расчет усредненного спектра по данному отрезку. Чем больше этот отрезок, тем точнее получается разрешающая способность по частоте, но при этом могут теряться (сглаживаться) отдельные детали временной структуры сигнала. Такие стационарные спектры обладают индивидуальными чертами, характерными для каждого музыкального инструмента, и зависят от механизма звукообразования в нем.

    Например, флейта использует в качестве резонатора открытую с двух концов трубу, и поэтому содержит в спектре все четные и нечетные гармоники. При этом уровень (амплитуда) гармоник быстро уменьшается с частотой. У кларнета используется в качестве резонатора труба, закрытая с одного конца, поэтому в спектре, в основном, содержатся нечетные гармоники. У трубы в спектре много высокочастотных гармоник. Соответственно, тембры звучания у всех этих инструментов совершенно разные: у флейты - мягкий, нежный, у кларнета - матовый, глуховатый, у трубы - яркий, резкий.

    Исследованию влияния спектрального состава обертонов на тембр посвящены сотни работ, поскольку эта проблема чрезвычайно важна как для проектирования музыкальных инструментов и высококачественной акустической аппаратуры, особенно в связи с развитием аппаратуры Hi-Fi и High-End, так и для слуховой оценки фонограмм и др. задач, встающих перед звукорежиссером. Накопленный огромный слуховой опыт наших замечательных звукорежиссеров - П.К. Кондрашина, В.Г. Динова, Е.В. Никульского, С.Г. Шугаля и др. - мог бы представить бесценные сведения по этой проблеме (особенно если бы они написали о нем в своих книгах, чего хотелось бы им пожелать).

    Поскольку этих сведений чрезвычайно много и они часто противоречивы, приведем только некоторые из них.
    Анализ общей структуры спектров различных инструментов, показанных на рисунке 5, позволяет сделать следующие выводы:
    - при отсутствии или недостатке обертонов, особенно в нижнем регистре, тембр звука становится скучным, пустым - примером может служит синусоидальный сигнал от генератора;
    - присутствие в спектре первых пяти-семи гармоник с достаточно большой амплитудой придает тембру полноту и сочность;
    - ослабление первых гармоник и усиление высших гармоник (от шестой-седьмой и выше) придает тембру

    Анализ огибающей амплитудного спектра для различных музыкальных инструментов позволил установить (Кузнецов "Акустика музыкальных инструментов"):
    - плавный подьем огибающей (увеличение амплитуд определенной группы обертонов) в области 200…700 Гц позволяет получить оттенки сочности, глубины;
    - подьем в области 2,5…3 кГц придает тембру полетность, звонкость;
    - подьем в области 3…4,5 кГц придает тембру резкость, пронзительность и др.

    Одна из многочисленных попыток классифицировать тембровые качества в зависимости от спектрального состава звука приведена на рисунке.

    Многочисленные эксперименты с оценкой качества звучания (а, следовательно, тембра) акустических систем позволили установить влияние различных пиков-провалов АЧХ на заметность изменения тембра. В частности, показано, что заметность зависит от амплитуды, расположения по частотной шкале и добротности пиков- провалов на огибающей спектра (т. е. на АЧХ). В средней области частот пороги заметности пиков, т. е. отклонения от среднего уровня, составляют 2…3 дБ, причем заметность изменения тембра на пиках больше, чем на провалах. Узкие по ширине провалы (менее 1/3 октавы) почти не заметны на слух - по-видимому, это обьясняется тем, что именно такие узкие провалы вносит помещение в АЧХ различных звуковых источников, и слух к ним привык.

    Существенное влияние оказывает группировка обертонов в формантные группы, особенно в области максимальной чувствительности слуха. Поскольку именно расположение форматных областей служит главным критерием различимости звуков речи, наличие формантных частотных диапазонов (т. е. подчеркнутых обертонов) значительно влияет на восприятие тембра музыкальных инструментов и певческого голоса: например, формантная группа в области 2…3 кГц придает полетность, звонкость певческому голосу и звукам скрипки. Эта третья форманта особенно выражена в спектрах скрипок Страдивари.

    Таким образом, безусловно справедливо утверждение классической теории, что воспринимаемый тембр звука зависит от его спектрального состава, то есть расположения обертонов на частотной шкале и соотношения их амплитуд. Это подтверждается многочисленной практикой работы со звуком в разных областях. Современные музыкальные программы позволяют легко проверить это на простых примерах. Например, можно в Sound Forge синтезировать с помощью встроенного генератора варианты звуков с различным спектральным составом, и послушать, как изменяется тембр их звучания.

    Из этого следуют еще два очень важных вывода:
    - тембр звучания музыки и речи изменяется в зависимости от изменения громкости и от транспонирования по высоте.

    При изменении громкости меняется восприятие тембра. Во-первых, при увеличении амплитуды колебаний вибраторов различных музыкальных инструментов (струн, мембран, дек и др.) в них начинают проявляться нелинейные эффекты, и это приводит к обогащению спектра дополнительными обертонами. На рисунке показан спектр фортепиано при разной силе удара, где штрихом отмечена шумовая часть спектра.

    Во-вторых, с увеличением уровня громкости изменяется чувствительность слуховой системы к восприятию низких и высоких частот (о кривых равной громкости было написано в предыдущих статьях). Поэтому при повышении громкости (до разумного предела 90…92 дБ) тембр становится полнее, богаче, чем при тихих звуках. При дальнейшем увеличении громкости начинают сказываться сильные искажения в источниках звука и слуховой системе, что приводит к ухудшению тембра.

    Транспонирование мелодии по высоте также меняет воспринимаемый тембр. Во-первых, обедняется спектр, поскольку часть обертонов попадает в неслышимый диапазон выше 15…20 кГц; во-вторых, в области высоких частот пороги слуха значительно выше, и высокочастотные обертоны становятся не слышны. В звуках низкого регистра (например, в органе) обертоны усиливаются из-за повышения чувствительности слуха к средним частотам, поэтому звуки низкого регистра звучат сочнее, чем звуки среднего регистра, где такого усиления обертонов нет. Следует отметить, что поскольку кривые равной громкости, как и потери чувствительности слуха к высоким частотам, в значительной степени индивидуальны, то и изменение восприятия тембра при изменении громкости и высоты также очень различаются у разных людей.
    Однако, накопленные к настоящему времени экспериментальные данные позволили выявить определенную инвариантность (стабильность) тембра при целом ряде условий. Например, при транспонировании мелодии по частотной шкале оттенки тембра, конечно, меняются, но в целом тембр инструмента или голоса легко опознается: при прослушивании, например, саксофона или другого инструмента через транзисторный радиоприемник можно опознать его тембр, хотя спектр его был значительно искажен. При прослушивании одного и того же инструмента в разных точках зала его тембр так же меняется, но принципиальные свойства тембра, присущие данному инструменту, остаются.

    Некоторые из этих противоречий удалось частично обьяснить в рамках классической спектральной теории тембра. Например, было показано, что для сохранения основных признаков тембра при транспонировании (переносе по частотной шкале) приниципиально важным является сохранение формы огибающей амплитудного спектра (т. е. его формантной структуры). Например, на рисунке показано, что при переносе спектра на октаву в том случае, когда структура огибающей сохраняется (вариант "а"), вариации тембра менее значительны, чем при переносе спектра с сохранением соотношения амплитуд (вариант "б").

    Этим обьясняется то, что звуки речи (гласные, согласные) можно распознать независимо от того, с какой высотой (частотой фундаментального тона) они произнесены, если при этом сохраняется расположение их формантных областей относительно друг друга.

    Таким образом, подводя итоги, полученные классической теорией тембра с учетом результатов последних лет, можно сказать, что тембр, безусловно, существенно зависит от усредненного спектрального состава звука: количества обертонов, их относительного расположения на частотной шкале, от соотношения их амплитуд, то есть формы спектральной огибающей (АЧХ), а точнее, от спектрального распределения энергии по частоте.
    Однако, когда в 60-х годах начались первые опыты синтеза звуков музыкальных инструментов, попытки воссоздать звучание, в частности, трубы по известному составу ее усредненного спектра оказались неудачными - тембр был совершенно не похож на звук медных духовых инструментов. То же относится и к первым попыткам синтеза голоса. Именно в это период, опираясь на возможности, который предоставили компьютерные технологии, началось развитие другого направления - установление связи восприятия тембра с временной структурой сигнала.
    Прежде, чем переходить к результатам, полученным в этом направлении, надо сказать следующее.
    Первое. Довольно широко распространено мнение, что при работе со звуковыми сигналами достаточно получить информацию об их спектральном составе, поскольку перейти к их временной форме всегда можно с помощью преобразования Фурье, и наоборот. Однако, однозначная связь между временным и спектральным представлениями сигнала существует только в линейных системах, а слуховая система является принципиально нелинейной системой, как при больших, так и при малых уровнях сигнала. Поэтому обработка информации в слуховой системе происходит параллельно как в спектральной, так и во временной области.

    Разработчики высококачественной акустической аппаратуры сталкиваются с этой проблемой постоянно, когда искажения АЧХ акустической системы (то есть неравномерность спектральной огибающей) доведены почти до слуховых порогов (неравномерность 2 дБ, ширина полосы 20 Гц…20 кГц и т. д.), а эксперты или звукорежиссеры говорят: "скрипка звучит холодно" или "голос с металлом" и т.п. Таким образом, информации, полученной из спектральной области, для слуховой системы недостаточно, нужна информация о временной структуре. Неудивительно, что методы измерений и оценки акустической аппаратуры существенно изменились за последние годы - появилась новая цифровая метрология, позволяющая определить до 30 параметров, как во временной, так и в спектральной областях.
    Следовательно, информацию о тембре музыкального и речевого сигнала слуховая система должна получать как из временной, так и из спектральной структуры сигнала.
    Второе. Все полученные выше результаты в классической теории тембра (теории Гельмгольца) базируются на анализе стационарных спектров, полученных из стационарной части сигнала с определенным усреднением, однако принципиально важным является то обстоятельство, что в реальных музыкальных и речевых сигналах практически нет постоянных, стационарных частей. Живая музыка - это непрерывная динамика, постоянное изменение, и это связано с глубинными свойствами слуховой системы.

    Исследования физиологии слуха позволили установить, что в слуховой системе, особенно в ее высших разделах, имеется множество так называемых нейронов "новизны" или "опознавания", т. е. нейронов, которые включаются и начинают проводить электрические разряды, только если есть изменения в сигнале (включение, выключение, изменение уровня громкости, высоты и т. д.). Если же сигнал стационарный, то эти нейроны не включаются, и контроль за сигналом осуществляет ограниченное количество нейронов. Это явление широко известно из повседневной жизни: если сигнал не меняется, то часто его просто перестают замечать.
    Для музыкального исполнения всякие монотонность и постоянство являются губительными: у слушателя отключаются нейроны новизны и он перестает воспринимать информацию (эстетическую, эмоциональную, смысловую и др), поэтому в живом исполнении всегда есть динамика (музыканты и певцы широко используют различную модуляцию сигнала - вибрато, тремоло и пр.).

    Кроме того, каждый музыкальный инструмент, включая голос, обладает особой системой звукообразования, которая диктует свою временную структуру сигнала и его динамику изменения. Сравнение временной структуры звука показывает принципиальные различия: в частности, длительности всех трех частей - атаки, стационарной части и спада - у всех инструментов различаются по продолжительности и по форме. У ударных инструментов очень короткая стационарная часть, время атаки 0,5…3 мс и время спада 0,2…1 с; у смычковых время атаки 30…120 мс, время спада 0,15…0,5 с; у органа атака - 50…1000 мс и спад 0,2…2 с. Кроме того, принципиально отличается форма временной огибающей.
    Эксперименты показали, что, если удалить часть временной структуры, соответствующей атаке звука, или поменять местами атаку и спад (проиграть в обратном направлении), или атаку от одного инструмента заменить атакой от другого, то опознать тембр данного инструмента становится практически невозможным. Следовательно, для распознавания тембра не только стационарная часть (усредненный спектр которой служит основой классической теории тембра), но и период формирования временной структуры, как и период затухания (спада) являются жизненно важными элементами.

    Действительно, при прослушивании в любом помещении первые отражения поступают на слуховую систему после того, как атака и начальная часть стационарной части уже была услышана. В то же время на спад звука от инструмента накладывается реверберационный процесс помещения, что значительно маскирует звук, и, естественно, приводит к модификации восприятия его тембра. Слух обладает определенной инерционностью, и короткие звуки воспринимаются как щелчки. Поэтому длительность звука должна быть больше 60 мс, чтобы можно было распознать высоту, и, соответственно, тембр. По-видимому, постоянные должны быть близки.
    Тем не менее, времени между началом прихода прямого звука и моментами поступления первых отражений оказывается достаточно, чтобы распознать тембр звучания отдельного инструмента - очевидно, этим обстоятельством и определяется инвариантность (стабильность) распознавания тембров разных инструментов в разных условиях прослушивания. Современные компьютерные технологии позволяют достаточно детально проанализировать процессы установления звука у разных инструментов, и выделить самые существенные акустические признаки, наиболее важные для определения тембра.

  3. Существенное влияние на восприятие тембра музыкального инструмента или голоса оказывает структура его стационарного (усредненного) спектра: состав обертонов, их расположение на частотной шкале, их частотные соотношения, распределения амплитуд и форма огибающей спектра, наличие и форма формантных областей и т.д., что полностью подтверждает положения классической теории тембра, изложенные еще в трудах Гельмгольца.
    Однако экспериментальные материалы, полученные за последние десятилетия, показали, что не менее существенную, а, может быть, и гораздо более существенную роль в распознавании тембра играет нестационарное изменение структуры звука и, соответственно, процесс развертывания во времени его спектра, в первую очередь, на начальном этапе атаки звука.

    Процесс изменения спектра во времени особенно наглядно можно "увидеть" с помощью спектрограмм или трехмерных спектров (они могут быть построены с помощью большинства музыкальных редакторов Sound Forge, SpectroLab, Wave Lab и др.). Их анализ для звуков различных инструментов позволяет выявить характерные особенности процессов "развертывания" спектров. Например, на рисункепоказан трехмерный спектр звучания колокола, где по одной оси отложена частота в Гц, по другой время в секундах; по третьей амплитуда в дБ. На графике отчетливо видно, как происходит процесс нарастания, установления и спада во времени спектральной огибающей.

    Сравнение атаки тона С4 у различных деревянных инструментов показывает, что процесс установления колебаний у каждого инструмента имеет свой особый характер:

    У кларнета доминируют нечетные гармоники 1/3/5, причем третья гармоника появляется в спектре на 30 мс позже первой, затем постепенно "выстраиваются" более высокие гармоники;
    - у гобоя установление колебаний начинается со второй и третьей гармоники, затем появляется четвертая и только через 8 мс начинает появляться первая гармоника;
    - у флейты сначала появляется первая гармоника, затем только через 80 мс постепенно вступают все остальные.

    На рисунке показан процесс установления колебаний для группы медных инструментов: трубы, тромбона, валторны и тубы.

    Отчетливо видны различия:
    - у трубы компактное появление группы высших гармоник, у тромбона первой появляется вторая гармоника, затем первая, и через 10 мс вторая и третья. У тубы и валторны видна концентрация энергии в первых трех гармониках, высшие гармоники практически отсутствуют.

    Анализ полученных результатов показывает, что процесс атаки звука существенно зависит от физической природы звукоизвлечения на данном инструменте:
    - от использования амбушюров или тростей, которые, в свою очередь, делятся на одинарные или двойные;
    - от различных форм труб (прямые узкомензурные или конусные широкомензурные) и т.д.

    Это определяет количество гармоник, время их появления, скорость выстраивания их амплитуды, а соответственно и форму огибающей временной структуры звука. У некоторых инструментов, например, флейты

    Огибающая в период атаки имеет плавный экспоненциальный характер, а у некоторых, например, фагота, отчетливо видны биения, что и является одной из причин существенных различий в их тембре.

    Во время атаки высшие гармоники иногда опережают основной тон, поэтому могут происходить флуктуации высоты тона периодичность, а значит, и высота суммарного тона, выстраиваются постепенно. Иногда эти изменения периодичности носят квазислучайный характер. Все эти признаки помогают слуховой системе "опознать" тембр того или иного инструмента в начальный момент звучания.

    Для оценки тембра звучания важен не только момент его распознавания (т.е. способность отличить один инструмент от другого), но и возможность оценить изменение тембра в процессе исполнения. Здесь важнейшую роль играет динамика изменения спектральной огибающей во времени на всех этапах звучания: атаки, стационарной части, спада.
    Характер поведения каждого обертона во времени также несет важнейшую информацию о тембре. Например, в звучании колоколов особенно четко видна динамика изменения, как по составу спектра, так и по характеру изменения во времени амплитуд его отдельных обертонов: если в первый момент после удара в спектре отчетливо видно несколько десятков спектральных составляющих, что создает шумовой характер тембра, то через несколько секунд в спектре остаются несколько основных обертонов (основной тон, октава, дуодецима и минорная терция через две октавы), остальные затухают, и это создает особый тонально окрашенный тембр звучания.

    Пример изменения амплитуд основных обертонов во времени для колокола показан на рисунке. Видно, что для него характерна короткая атака и длинный период затухания, при этом скорость вступления и спада обертонов различных порядков и характер изменения их амплитуд во времени существенно отличаются. Поведение различных обертонов во времени зависит от типа инструмента: в звучании рояля, органа, гитары и др. процесс изменения амплитуд обертонов имеет совершенно разный характер.

    Опыт показывает, что аддитивный компьютерный синтез звуков, учитывающий специфику развертывания отдельных обертонов во времени, позволяет получить значительно более "жизненное" звучание.

    Вопрос о том, динамика изменения каких именно обертонов несет информацию о тембре, связан с существованием критических полос слуха. Базилярная мембрана в улитке действует как линейка полосовых фильтров, ширина полосы которых зависит от частоты: выше 500 Гц она равна примерно 1/3 октавы, ниже 500 Гц она составляет примерно100 Гц. Ширина полосы этих слуховых фильтров называется "критической полосой слуха" (существует специальная единица измерения 1 барк, равная ширине критической полосы во всем диапазоне слышимых частот).
    Внутри критической полосы слух производит интегрирование поступившей звуковой информации, что играет также важную роль в процессах слуховой маскировки. Если проанализировать сигналы на выходе слуховых фильтров, то можно видеть, что первые пять-семь гармоник в спектре звучания любого инструмента попадают обычно каждая в свою критическую полосу, поскольку они достаточно далеко отстоят друг от друга в таких случаях говорят, что гармоники "развертываются" слуховой системой. Разряды нейронов на выходе таких фильтров синхронизированы с периодом каждой гармоники.

    Гармоники выше седьмой обычно находятся достаточно близко друг к другу по частотной шкале, и не "развертываются" слуховой системой внутрь одной критической полосы попадает несколько гармоник, а на выходе слуховых фильтров получается сложный сигнал. Разряды нейронов в этом случае синхронизированы с частотой огибающей, т.е. основного тона.

    Соответственно, механизм обработки информации слуховой системой для развернутых и неразвернутых гармоник несколько отличается в первом случае используется информация "по времени", во втором "по месту".

    Существенную роль при распознавании высоты тона, как было показано в предыдущих статьях, играют первые пятнадцать- восемнадцать гармоник. Эксперименты с помощью компьютерного аддитивного синтеза звуков показывают, что поведение именно этих гармоник оказывает также наиболее существенное влияние на изменение тембра.
    Поэтому в ряде исследований предлагалось размерность тембра считать равной пятнадцати-восемнадцати, и оценивать его изменение по этому количеству шкал это одно из принципиальных отличий тембра от таких характеристик слухового восприятия, как высота или громкость, которые могут быть шкалированы по двум- трем параметрам (например, громкость), зависящих в основном от интенсивности, частоты и длительности сигнала.

    Достаточно хорошо известно, что если в спектре сигнала присутствует достаточно много гармоник с номерами от 7-ой до15…18-ой, с достаточно большими амплитудами, например, у трубы, скрипки, язычковых труб органа и т.п., то тембр воспринимается как яркий, звонкий, резкий и т. д. Если в спектре присутствуют в основном низшие гармоники, например, у тубы, валторны, тромбона, то тембр характеризуется как темный, глухой и т.д.. Кларнет, у которого в спектре доминируют нечетные гармоники, обладает несколько "носовым" тембром и т.д.
    В соответствии с современными взглядами, важнейшую роль для восприятия тембра имеет изменение динамики распределения максимума энергии между обертонами спектра.

    Для оценки этого параметра введено понятие "центроид спектра", который определяется как средняя точка распределения спектральной энергии звука, его иногда определяют как "балансную точку" спектра. Способ определения его состоит в том, что рассчитывается значение некоторой средней частоты:

    Где Ai амплитуда составляющих спектра, fi их частота.
    Для примера, показанного на рисунке, это значение центроида составляет 200 Гц.

    F =(8 х 100 + 6 х 200 + 4 х 300 + 2 х 400)/(8 + 6 + 4 + 2) = 200.

    Смещение центроида в сторону высоких частот ощущается как повышение яркости тембра.
    Существенное влияние распределения спектральной энергии по частотному диапазону и ее изменения во времени на восприятие тембра связано, вероятно, с опытом распознания звуков речи по формантным признакам, которые и несут информацию о концентрации энергии в различных областях спектра (неизвестно, правда, что было первичным).
    Эта способность слуха имеет существенное значение при оценке тембров музыкальных инструментов, поскольку наличие формантных областей характерно для большинства музыкальных инструментов, например, у скрипок в областях 800…1000 Гц и 2800…4000 Гц, у кларнетов 1400…2000 Гц и т.д.
    Соответственно, их положение и динамика изменения во времени влияют на восприятие индивидуальных особенностей тембра.
    Известно, какое значительное влияние на восприятие тембра певческого голоса оказывает наличие высокой певческой форманты (в области 2100…2500 Гц у басов, 2500…2800 Гц у теноров, 3000…3500 Гц у сопрано). В этой области у оперных певцов сосредоточивается до 30% акустической энергии, что обеспечивает звонкость и полетность голоса. Удаление с помощью фильтров певческой форманты из записей различных голосов (эти опыты были выполнены в исследованиях проф. В.П. Морозова) показывает, что тембр голоса становится тусклым, глуховатым и вялым.

    Изменение тембра при изменении громкости исполнения и транспонировании по высоте также сопровождается сдвигом центроида за счет изменения количества обертонов.
    Пример изменения положения центроида для звуков скрипки разной высоты показан на рисунке (по оси абсцисс отложена частота расположения центроида в спектре).
    Исследования показали, что у многих музыкальных инструментов имеется почти монотонная связь между увеличением интенсивности (громкости) и сдвигом центроида в высокочастотную область, за счет чего тембр становится ярче.

    По-видимому, при синтезе звуков и создании различных компьютерных композиций следует учитывать динамическую связь между интенсивностью и положением центроида в спектре для того, чтобы получать более естественный тембр.
    Наконец, различие в восприятии тембров реальных звуков и звуков с "виртуальной высотой", т.е. звуков, высоту которых мозг "достраивает" по нескольким целочисленным обертонам спектра (это характерно, например, для звуков колоколов), можно объяснить с позиций положения центроида спектра. Поскольку у этих звуков значение частоты основного тона, т.е. высоты, может быть одинаковым, а положение центроида разное из-за разного состава обертонов, то, соответственно, тембр будет восприниматься по-разному.
    Интересно отметить, что еще более десяти лет назад для измерения акустической аппаратуры был предложен новый параметр, а именно трехмерный спектр распределения энергии по частоте и по времени, так называемое распределение Вигнера, которое достаточно активно используется различными фирмами для оценки аппаратуры, поскольку, как показывает опыт, позволяет установить наилучшее соответствие с ее качеством звучания. Учитывая изложенное выше свойство слуховой системы использовать динамику изменения энергетических признаков звукового сигнала для определения тембра, можно предположить, что этот параметр распределение Вигнера может быть полезен и для оценки музыкальных инструментов.

    Оценка тембров различных инструментов всегда носит субъективный характер, но если при оценке высоты и громкости можно на основе субъективных оценок расположить звуки по определенной шкале (и даже ввести специальные единицы измерения "сон" для громкости и "мел" для высоты), то оценка тембра значительно более трудная задача. Обычно для субъективной оценки тембра слушателям предъявляются пары звуков, одинаковых по высоте и громкости, и их просят расположить эти звуки по разным шкалам между различными противоположными описательными признаками: "яркий"/"темный", "звонкий"/"глухой" и т.д. (О выборе различных терминов для описания тембров и о рекомендациях международных стандартов по этому вопросу мы обязательно поговорим в дальнейшем).
    Существенное влияние на определение таких параметров звука, как высота, тембр и др., оказывает поведение во времени первых пяти-семи гармоник, а также ряда "неразвернутых" гармоник до 15…17-ой.
    Однако, как известно из общих законов психологии, кратковременная память человека может одновременно оперировать не более чем семью-восьмью символами. Поэтому очевидно, что и при распознавании и оценке тембра используется не более семи восьми существенных признаков.
    Попытки установить эти признаки путем систематизации и усреднения результатов экспериментов, найти обобщенные шкалы, по которым можно было бы идентифицировать тембры звуков различных инструментов, связать эти шкалы с различными временно-спектральными характеристиками звука, предпринимаются уже давно.

    Одной из самых известных является работа Грея (1977 г.), где было проведено статистическое сравнение оценок по различным признакам тембров звуков различных инструментов струнных, деревянных, перкуссионных и др. Звуки были синтезированы на компьютере, что позволяло менять в требуемых направлениях их временные и спектральные характеристики. Классификация тембральных признаков была выполнена в трехмерном (ортогональном) пространстве, где в качестве шкал, по которым по которым производилась сравнительная оценка степени подобия тембральных признаков (в пределах от 1 до 30), были выбраны следующие:

    Первая шкала - значение центроида амплитудного спектра (по шкале отложено смещение центроида, т.е. максимума спектральной энергии от низких к высоким гармоникам);
    - вторая - синхронность спектральных флуктуаций, т.е. степень синхронности вступления и развития отдельных обертонов спектра;
    - третья - степень наличия низкоамплитудной негармонической высокочастотной энергии шума в период атаки.

    Обработка полученных результатов с помощью специального пакета программ для кластерного анализа позволила выявить возможность достаточно четкой классификации инструментов по тембрам внутри предложенного трехмерного пространства.

    Попытка визуализировать тембральное различие звуков музыкальных инструментов в соответствии с динамикой изменения их спектра в период атаки была предпринята в работе Полларда (1982 г.), результаты показаны на рисунке.

    Трехмерное пространство тембров

  4. Поиски методов многомерного шкалирования тембров и установление их связей с спектрально-временными характеристиками звуков активно продолжаются. Эти результаты чрезвычайно важны для развития технологий компьютерного синтеза звуков, для создания различных электронных музыкальных композиций, для коррекции и обработки звука в звукорежиссерской практике и т.д.

    Интересно отметить, что еще в начале века великий композитор ХХ века Арнольд Шёнберг высказал идею, что "…если рассматривать высоту тона, как одну из размерностей тембра, а современную музыку построенной на вариации этой размерности, то почему бы не попробовать использовать другие размерности тембра для создания композиций". Эта идея реализуется в настоящее время в творчестве композиторов, создающих спектральную (электроакустическую) музыку. Именно поэтому интерес к проблемам восприятия тембра и его связям с объективными характеристиками звука настолько высок.

    Таким образом, полученные результаты показывают, что, если в первый период изучения восприятия тембра (на основе классической теории Гельмгольца) была установлена четкая связь изменения тембра с изменением спектрального состава стационарной части звучания (составом обертонов, соотношением их частот и амплитуд и др.), то второй период этих исследований (с начала 60-х годов) позволил установить принципиальную важность спектрально-временных характеристик.

    Это изменение структуры временной огибающей на всех этапах развития звука: атаки (что особенно важно для распознавания тембров различных источников), стационарной части и спада. Это и динамическое изменение во времени спектральной огибающей, в т.ч. смещение центроида спектра, т.е. смещение максимума спектральной энергии во времени, а также развитие во времени амплитуд спектральных составляющих, особенно первых пяти-семи "неразвернутых" гармоник спектра.

    В настоящее время начался третий период изучения проблемы тембра центр исследований переместился в сторону изучения влияния фазового спектра, а также к использованию психофизических критериев в распознавании тембров, лежащих в основе общего механизма распознавания звукового образа (группировка в потоки, оценка синхронности и др.).

    Тембр и фазовый спектр

    Все изложенные результаты по установлению связи воспринимаемого тембра с акустическими характеристиками сигнала относились к амплитудному спектру, точнее, к временному изменению спектральной огибающей (в первую очередь смещению энергетического центра амплитудного спектра-центроида) и развертыванию во времени отдельных обертонов.

    В этом направлении было проделано наибольшее количество работ и получено много интересных результатов. Как уже было отмечено, на протяжении почти ста лет в психоакустике превалировало мнение Гельмгольца о том, что наша слуховая система не чувствительна к изменениям фазовых соотношений между отдельными обертонами. Однако постепенно были накоплены экспериментальные данные о том, что слуховой аппарат чувствителен к изменениям фаз между различными компонентами сигнала (работы Шредера, Хартмана и др.).

    В частности, было установлено, что слуховой порог к фазовому сдвигу в двух- и трехкомпонентных сигналах в области низких и средних частот составляет 10…15 градусов.

    В 80-х годах это привело к созданию ряда акустических систем с линейно-фазовой характеристикой. Как известно из общей теории систем, для неискаженной передачи сигнала необходимо, чтобы соблюдались постоянство модуля передаточной функции, т.е. амплитудно-частотной характеристики (огибающей амплитудного спектра), и линейная зависимость фазового спектра от частоты, т.е. φ(ω) = -ωТ.

    Действительно, если амплитудная огибающая спектра сохраняется постоянной, то, как было сказано выше, искажений звукового сигнала при этом не должно происходить. Требования же к сохранению линейности фазы во всем диапазоне частот, как показали исследования Блауерта, оказались избыточными. Было установлено, что слух реагирует в первую очередь на скорость изменения фазы (т.е. ее производную по частоте), которая называется "групповое время задерживания ГВЗ ": τ = dφ(ω)/dω.

    В результате многочисленных субъективных экспертиз были построены пороги слышимости искажений ГВЗ (т.е. величины отклонения Δτ от ее постоянного значения) для различных речевых, музыкальных и шумовых сигналов. Эти слуховые пороги зависят от частоты, и в области максимальной чувствительности слуха составляют 1…1,5 мс. Поэтому последние годы при создании акустической аппаратуры Hi-Fi ориентируются, в основном, на приведенные выше слуховые пороги по искажению ГВЗ.

    Вид волновой формы при разных соотношениях фаз обертонов; красная - все обертоны имеют одинаковые начальные фазы, синяя - фазы распределены случайно.

    Таким образом, если фазовые соотношения оказывают слышимое влияние на определение высоты тона, то можно ожидать, что они окажут существенное влияние и на распознавание тембра.

    Для экспериментов были выбраны звуки с основным тоном 27,5 и 55 Гц и со ста обертонами, с равномерным соотношением амплитуд, характерным для звуков фортепиано. При этом исследовались и тоны со строго гармоничными обертонами, и с определенной характерной для звуков фортепиано негармоничностью, которая возникает из-за конечной жесткости струн, их неоднородности, наличия продольных и крутильных колебаний и др.

    Исследуемый звук синтезировался как сумма его обертонов: X(t)=ΣA(n)sin
    Для слуховых экспериментов было выбраны следующие соотношения начальных фаз для всех обертонов:
    - А - синусоидальная фаза, начальная фаза была принята равной нулю для всех обертонов φ(n,0) = 0;
    - Б - альтернативная фаза (синусоидальная для четных и косинусоидальная для нечетных), начальная фаза φ(n,0)=π/4[(-1)n+1];
    - С - случайное распределение фаз; начальные фазы при этом изменялись случайным образом в интервале от 0 до 2π.

    В первой серии экспериментов все сто обертонов имели одинаковые амплитуды, различались только их фазы (основной тон 55 Гц). При этом прослушиваемые тембры получились различными:
    - в первом случае (А), прослушивалась отчетливая периодичность;
    - во- втором (Б), тембр был ярче и прослушивалась еще одна высота тона на октаву выше первой (правда высота не была четкой);
    - в третьем (С) - тембр получился более равномерный.

    Необходимо заметить - вторая высота прослушивалась только в наушниках, при прослушивании через громкоговорители все три сигнала отличались только тембром (сказывалась реверберация).

    Это явление - изменение высоты тона при изменении фазы некоторых составляющих спектра - можно объяснить тем, что при аналитическом представлении преобразования Фурье сигнала типа Б, его можно представить как сумму двух комбинаций обертонов: сто обертонов с фазой типа А, и пятьдесят обертонов с фазой, отличающейся на 3π/4, и амплитудой больше в √2. Этой группе обертонов слух назначает отдельную высоту тона. Кроме того, при переходе от соотношения фаз А к фазам типа В смещается центроид спектра (максимум энергии) в сторону высоких частот, поэтому тембр кажется ярче.

    Аналогичные эксперименты со сдвигом фаз отдельных групп обертонов также приводят к появлению дополнительной (менее ясной) виртуальной высоты тона. Это свойство слуха связано с тем, что слух сравнивает звук с определенным имеющимся у него образцом музыкального тона, и если какие-то гармоники выпадают из типичного для данного образца ряда, то слух выделяет их отдельно, и назначает им отдельную высоту.

    Таким образом, результаты исследований Галембо, Аскенфельда и др. показали, что фазовые изменения в соотношениях отдельных обертонов достаточно отчетливо слышны как изменения тембра, и в некоторых случаях - высоты тона.

    Особенно это проявляется при прослушивании реальных музыкальных тонов фортепиано, в которых амплитуды обертонов убывают с увеличением их номера, имеют место особая форма огибающей спектра (формантной структуры), и отчетливо выраженная негармоничность спектра (т.е. сдвиг частот отдельных обертонов по отношению к гармоническому ряду).

    Во временной области наличие негармоничности приводит к дисперсии, то есть высокочастотные компоненты распространяются по струне с большей скоростью, чем низкочастотные, и волновая форма сигнала изменяется. Наличие небольшой негармоничности в звуке (0,35%) добавляет некоторую теплоту, жизненность звучания, однако, если эта негармоничность становиться большой, в звучании становятся слышны биения и другие искажения.

    Негармоничность приводит также к тому, что если в начальный момент фазы обертонов находились в детерминированных соотношениях, то при ее наличии соотношения фаз со временем становятся случайными, пиковая структура волновой формы сглаживается, и тембр становится более равномерным - это зависит от степени негармоничности. Поэтому мгновенное измерение регулярности соотношения фаз между соседними обертонами может служить индикатором тембра.

    Таким образом, эффект фазового перемешивания за счет негармоничности проявляется в некотором изменении восприятия высоты тона и тембра. Необходимо заметить, что эти эффекты слышны при прослушивании на близком расстоянии от деки (в позиции пианиста) и при близком расположении микрофона, причем слуховые эффекты различаются при прослушивании в наушниках и через громкоговорители. В реверберационном окружении сложный звук с высоким пик фактором (что соответствует высокой степени регуляризации фазовых соотношений) говорит о близости источника звука, поскольку по мере удаления от него фазовые отношения приобретают все более случайный характер за счет отражений в помещении. Этот эффект может служит причиной разных оценок звучания пианистом и слушателем, а также разного тембра звука, записанного микрофоном у деки и у слушателя. Чем ближе, тем выше регуляризация фаз между обертонами и более определенная высота тона, чем дальше, тем более равномерный тембр и менее четкая высота.

    Работы по оценке влияния фазовых соотношений на восприятие тембра музыкального звука сейчас активно изучаются в различных центрах (например, в ИРКАМе), и можно ожидать в ближайшее время новых результатов.

  5. Тембр и общие принципы распознавания слуховых образов

    Тембр является идентификатором физического механизма образования звука по ряду признаков, он позволяет выделить источник звука (инструмент или группу инструментов), и определить его физическую природу.

    Это отражает общие принципы распознавания слуховых образов, в основе которых, как считает современная психоакустика, лежат принципы гештальт-психологии (geschtalt, нем. - "образ"), которая утверждает, что для разделения и распознавания различной звуковой информации, приходящей к слуховой системе от разных источников в одно и то же время (игра оркестра, разговор многих собеседников и др.) слуховая система (как и зрительная) использует некоторые общие принципы:

    - сегрегация - разделение на звуковые потоки, т.е. субъективное выделение определенной группы звуковых источников, например, при музыкальной полифонии слух может отслеживать развитие мелодии у отдельных инструментов;
    - подобие - звуки, похожие по тембру, группируются вместе и приписываются одному источнику, например, звуки речи с близкой высотой основного тона и похожим тембром определяются, как принадлежащие одному собеседнику;
    - непрерывность - слуховая система может интерполировать звук из единого потока через маскер, например, если в речевой или музыкальный поток вставить короткий отрезок шума, слуховая система может не заметить его, звуковой поток будет продолжать восприниматься как непрерывный;
    - "общая судьба" - звуки, которые стартуют и останавливаются, а также изменяются по амплитуде или частоте в определенных пределах синхронно, приписываются одному источнику.

    Таким образом, мозг производит группировку поступившей звуковой информации как последовательную, определяя распределение по времени звуковых компонент в рамках одного звукового потока, так и параллельную, выделяя частотные компоненты присутствующие и изменяющиеся одновременно. Кроме того, мозг все время проводит сравнение поступившей звуковой информации с "записанными" в процессе обучения в памяти звуковыми образами.Сравнивая поступившие сочетания звуковых потоков с имеющимися образами, он или легко их идентифицирует, если они совпадают с этими образами, или, в случае неполного совпадения, приписывает им какие-то особые свойства (например, назначает виртуальную высоту тона, как в звучании колоколов).

    Во всех этих процессах распознавание тембра играет принципиальную роль, поскольку тембр является механизмом, с помощью которого экстрактируются из физических свойств признаки, определяющие качество звука: они записываются в памяти, сравниваются с уже записанными, и затем идентифицируются в определенных зонах коры головного мозга.

    Слуховые зоны мозга

    Тембр - ощущение многомерное, зависящее от многих физических характеристик сигнала и окружающего пространства. Были проведены работы по шкалированию тембра в метрическом пространстве (шкалы - это различные спектрально временные характеристики сигнала, см. вторую часть статьи в предыдущем номере).

    В последние годы, однако, появилось понимание, что классификация звуков в субъективно воспринимаемом пространстве не соответствует обычному ортогональному метрическому пространству, там происходит классификация по "субпространствам", связанным с вышеуказанными принципами, которые и не метрические, и не ортогональные.

    Разделяя звуки по этим субпространствам, слуховая система определяет "качество звука", то есть тембр, и решает, к какой категории отнести эти звуки. Однако следует отметить, что все множество субпространств в субъективно воспринимаемом звуковом мире строится на основе информации о двух параметрах звука из внешнего мира - интенсивности и времени, а частота определяется временем прихода одинаковых значений интенсивности. Тот факт, что слух разделяет поступившую звуковую информацию сразу по нескольким субъективным субпространствам, повышает вероятность того, что в каком-то из них она может быть распознана. Именно на выделение этих субъективных субпространств, в которых происходит распознавание тембров и других признаков сигналов, и направлены усилия ученых в настоящее время.

    Заключение

    Подводя некоторые итоги, можно сказать, что основными физическими признаками, по которым определяется тембр инструмента, и его изменение во времени, являются:
    - выстраивание амплитуд обертонов в период атаки;
    - изменение фазовых соотношений между обертонами от детерминированных к случайным (в частности, за счет негармоничности обертонов реальных инструментов);
    - изменение формы спектральной огибающей во времени во все периоды развития звука: атаки, стационарной части и спада;
    - наличие нерегулярностей спектральной огибающей и положение спектрального центроида (максимума

    Спектральной энергии, что связано с восприятием формант) и их изменение во времени;

    Общий вид спектральных огибающих и их изменение во времени

    Наличие модуляций - амплитудной (тремоло) и частотной (вибрато);
    - изменение формы спектральной огибающей и характера ее изменения во времени;
    - изменение интенсивности (громкости) звучания, т.е. характера нелинейности звукового источника;
    - наличие дополнительных признаков идентификации инструмента, например, характерный шум смычка, стук клапанов, скрип винтов на рояле и др.

    Разумеется, все это не исчерпывает перечень физических признаков сигнала, определяющих его тембр.
    Поиски в этом направлении продолжаются.
    Однако при синтезе музыкальных звуков необходимо учитывать все признаки для создания реалистичного звучания.

    Вербальное (словесное) описание тембра

    Если для оценки высоты звуков имеются соответствующие единицы измерения: психофизические (мелы), музыкальные (октавы, тоны, полутоны, центы); есть единицы для громкости (соны, фоны), то для тембров такие шкалы построить невозможно, поскольку это понятие многомерное. Поэтому, наряду с описанными выше поисками корреляции восприятия тембра с объективными параметрами звука, для характеристики тембров музыкальных инструментов пользуются словесными описаниями, подобранными по признакам противоположности: яркий - тусклый, резкий - мягкий и др.

    В научной литературе имеется большое количество понятий, связанных с оценкой тембров звука. Например, анализ терминов, принятых в современной технической литературе, позволил выявить наиболее часто встречающиеся термины, показанные в таблице. Были сделаны попытки выявить самые значимые среди них, и провести шкалирование тембра по противоположным признакам, а также связать словесное описание тембров с некоторыми акустическими параметрами.

    Основные субъективные термины для описания тембра, используемые в современной международной технической литературе (статистический анализ 30 книг и журналов).

    Acidlike - кислый
    forceful - усиленный
    muffled - заглушенный
    sober - трезвый (рассудительный)
    antique - старинный
    frosty - морозный
    mushy - пористый
    soft - мягкий
    arching - выпуклый
    full - полный
    mysterious - загадочный
    solemn - торжественный
    articulate - разборчивый
    fuzzy - пушистый
    nasal - носовой
    solid - твердый
    austere - суровый
    gauzy - тонкий
    neat - аккуратный
    somber - мрачный
    bite, biting - кусачий
    gentle - нежный
    neutral - нейтральный
    sonorous - звучный
    bland - вкрадчивый
    ghostlike - призрачный
    noble - благородный
    steely - стальной
    blaring - ревущий
    glassy - стеклянный
    nondescript - неописуемый
    strained - натянутый
    bleating - блеющий
    glittering - блестящий
    nostalgic - ностальгический
    strident - скрипучий
    breathy - дыхательный
    gloomy - унылый
    ominous - зловещий
    stringent - стесненный
    bright - яркий
    grainy - зернистый
    ordinary - ординарный
    strong - сильный
    brilliant - блестящий
    grating - скрипучий
    pale - бледный
    stuffy - душный
    brittle - подвижный
    grave - серьезный
    passionate - страстный
    subdued - смягченный
    buzzy - жужжащий
    growly - рычащий penetrating - проникающий
    sultry - знойный
    calm - спокойный
    hard - жесткий
    piercing - пронзительный
    sweet - сладкий
    carrying - полетный
    harsh - грубый
    pinched - ограниченный
    tangy - запутанный
    centered - концентрированный
    haunting - преследующий
    placid - безмятежный
    tart - кислый
    clangorous - звенящий
    hazy - смутный
    plaintive - заунывный
    tearing - неистовый
    clear, clarity - ясный
    hearty - искренний
    ponderous - увесистый
    tender - нежный
    cloudy - туманный
    heavy - тяжелый
    powerful - мощный
    tense - напряженный
    coarse - грубый
    heroic - героический
    prominent - выдающийся
    thick - толстый
    cold - холодный
    hoarse - хриплый
    pungent - едкий
    thin - тонкий
    colorful - красочный
    hollow - пустой
    pure - чистый
    threatening - угрожающий
    colorless - бесцветный
    honking - гудящий(автомобильный гудок)
    radiant - сияющий
    throaty - хриплый
    cool - прохладный
    hooty - гудящий
    raspy - дребезжащий
    tragic - трагичный
    crackling - трескучий
    husky - сиплый
    rattling - грохочущий
    tranquil - успокаивающий
    crashing - ломаный
    incandescence - накаленный
    reedy - пронзительный
    transparent - прозразный
    creamy - сливочный
    incisive - резкий
    refined - рафинированый
    triumphant - торжествующий
    crystalline - кристаллический
    inexpressive - невыразительный
    remote - удаленный
    tubby - бочкообразный
    cutting - резкий
    intense - интенсивный
    rich - богатый
    turbid - мутный
    dark - темный
    introspective - углубленный
    ringing - звенящий
    turgid - высокопарный
    deep - глубокий
    joyous - радостный
    robust - грубый
    unfocussed - несфокусированный
    delicate - деликатный
    languishing - печальный
    rough - терпкий
    unobtrsuive - скромный
    dense - плотный
    light - светлый
    rounded - круглый
    veiled - завуалированный
    diffuse - рассеяный
    limpid - прозрачный
    sandy - песочный
    velvety - бархатистый
    dismal - отдаленный
    liquid - водянистый
    savage - дикий
    vibrant - вибрирующий
    distant - отчетливый
    loud - громкий
    screamy - кричащий
    vital - жизненный
    dreamy - мечтательный
    luminous - блестящий
    sere - сухой voluptuous - пышный(роскошный)
    dry - сухой
    lush (luscious) - сочный
    serene, serenity - спокойный
    wan - тусклый
    dull - скучный
    lyrical - лирический
    shadowy - затененный
    warm - теплый
    earnest - серьезный
    massive - массивный
    sharp - резкий
    watery - водянистый
    ecstatic - экстатический
    meditative - созерцательный
    shimmer - дрожащий
    weak - слабый
    ethereal - эфирный
    melancholy - меланхоличный
    shouting - кричащий
    weighty - тяжеловесный
    exotic - экзотический
    mellow - мягкий
    shrill - пронзительный
    white - белый
    expressive - выразительный
    melodious - мелодичный
    silky - шелковистый
    windy - ветряный
    fat - жирный
    menacing - угрожающий
    silvery - серебристый
    wispy - тонкий
    fierce - жесткий
    metallic - металлический
    singing - певучий
    woody - деревянный
    flabby - дряблый
    мisty - неясный
    sinister - зловещий
    yearning - тоскливый
    focussed - сфокусированный
    mournful - траурный
    slack - расхлябанный
    forboding - отталкивающий
    muddy - грязный
    smooth - гладкий

    Однако, главная проблема состоит в том, что нет однозначного понимания различных субъективных терминов, описывающих тембр. Приведенный вперечне перевод далеко не всегда соответствует тому техническому смыслу, которое вкладывается в каждое слово при описании различных аспектов оценки тембра.

    В нашей литературе раньше был стандарт на основные термины, но сейчас дела обстоят совсем печально, поскольку не ведется работа по созданию соответствующей русскоязычной терминологии, и употребляется много терминов в разных, иногда прямо противоположных, значениях.
    В связи с этим AES при разработке серии стандартов по субъективным оценкам качества аудиоаппаратуры, систем звукозаписи и др. начал приводить определения субъективных терминов в приложениях к стандартам, а так как стандарты создаются в рабочих группах, включающих ведущих специалистов разных стран, то эта очень важная процедура приводит к согласованному пониманию основных терминов для описания тембров.
    В качестве примера приведу стандарт AES-20-96 - "Рекомендации для субъективной оценки громкоговорителей", - где дано согласованное определение таких терминов, как "открытость", "прозрачность", "ясность", "напряженность", "резкость" и др.
    Если эта работа будет систематически продолжаться, то, возможно, основные термины для словесного описания тембров звуков различных инструментов и других звуковых источников будут иметь согласованные определения, и будут однозначно или достаточно близко пониматься специалистами разных стран.

 

 

Это интересно: