→ Как определить какая кристаллическая решетка у вещества. Кристаллическая решетка и ее основные типы

Как определить какая кристаллическая решетка у вещества. Кристаллическая решетка и ее основные типы

Для большинства веществ характерна способность в зависимости от условий находиться в одном из трех агрегатных состояний: твердом, жидком или газообразном.

Например, вода при нормальном давлении в интервале температур 0-100 o C является жидкостью, при температуре выше 100 о С способна существовать только в газообразном состоянии, а при температуре менее 0 о С представляет собой твердое вещество.
Вещества в твердом состоянии различают аморфные и кристаллические.

Характерными признаками аморфных веществ является отсутствие четкой температуры плавления: их текучесть плавно увеличивается с ростом температуры. К аморфным веществам относятся такие соединения, как воск, парафин, большинство пластмасс, стекло и т.д.

Все же кристаллические вещества обладают конкретной температурой плавления, т.е. вещество с кристаллическим строением переходит из твердого состоянии в жидкое не постепенно, а резко, при достижении конкретной температуры. В качестве примера кристаллических веществ можно привести поваренную соль, сахар, лед.

Разница в физических свойствах аморфных и кристаллических твердых веществ обусловлена прежде всего особенностями строения таких веществ. В чем заключается разница между веществом в аморфном и кристаллическом состоянии, проще всего понять из следующей иллюстрации:

Как можно заметить, в аморфном веществе, в отличие от кристаллического, отсутствует какой-либо порядок в расположении частиц. Если же в кристаллическом веществе мысленно соединить прямой два близкорасположенных друг к другу атома, то можно обнаружить, что на этой линии на строго определенных промежутках будут лежать одни и те же частицы:

Таким образом, в случае кристаллических веществах можно говорить о таком понятии, как кристаллическая решетка.

Кристаллической решеткой называют пространственный каркас, соединяющий точки пространства, в которых находятся частицы, образующие кристалл.

Точки пространства, в которых находятся образующие кристалл частицы, называют узлами кристаллической решетки .

В зависимости от того, какие частицы находятся в узлах кристаллической решетки, различают: молекулярную, атомную, ионную и металлическую кристаллические решетки .

В узлах молекулярной кристаллической решетки
Кристаллическая решетка льда как пример молекулярной решетки

находятся молекулы, внутри которых атомы связаны прочными ковалентными связями, однако сами молекулы удерживаются друг возле друга слабыми межмолекулярными силами. Вследствие таких слабых межмолекулярных взаимодействий кристаллы с молекулярной решеткой являются непрочными. Такие вещества от веществ с иными типами строения отличаются существенно более низкими температурами плавления и кипения, не проводят электрический ток, могут как растворяться, так и не растворяться в различных растворителях. Растворы таких соединений могут как проводить, так и не проводить электрический ток в зависимости от класса соединения. К соединениям с молекулярной кристаллической решеткой относятся многие простые вещества — неметаллы (отвержденные H 2 , O 2 , Cl 2 , ромбическая сера S 8 , белый фосфор P 4), а также многие сложные вещества – водородные соединения неметаллов, кислоты, оксиды неметаллов, большинство органических веществ. Следует отметить, что, если вещество находится в газообразном или жидком состоянии, говорить о молекулярной кристаллической решетке неуместно: корректнее использовать термин — молекулярный тип строения.

Кристаллическая решетка алмаза как пример атомной решетки
В узлах атомной кристаллической решетки

находятся атомы. При этом все узлы такой кристаллической решетки «сшиты» между собой посредством прочных ковалентных связей в единый кристалл. Фактически, такой кристалл является одной гигантской молекулой. Вследствие особенностей строения все вещества с атомной кристаллической решеткой являются твердыми, обладают высокими температурами плавления, химически мало активны, не растворимы ни в воде, ни в органических растворителях, а их расплавы не проводят электрический ток. Следует запомнить, что к веществам с атомным типом строения из простых веществ относятся бор B, углерод C (алмаз и графит), кремний Si, из сложных веществ — диоксид кремния SiO 2 (кварц), карбид кремния SiC, нитрид бора BN.

У веществ с ионной кристаллической решеткой

в узлах решетки находятся ионы, связанные друг с другом посредством ионных связей.
Поскольку ионные связи достаточно прочны, вещества с ионной решеткой обладают сравнительно высокой твердостью и тугоплавкостью. Чаще всего они растворимы в воде, а их растворы, как и расплавы проводят электрический ток.
К веществам с ионным типом кристаллической решетки относятся соли металлов и аммония (NH 4 +), основания, оксиды металлов. Верным признаком ионного строения вещества является наличие в его составе одновременно атомов типичного металла и неметалла.

Кристаллическая решетка хлорида натрия как пример ионной решетки

наблюдается в кристаллах свободных металлов, например, натрия Na, железа Fe, магния Mg и т.д. В случае металлической кристаллической решетки, в ее узлах находятся катионы и атомы металлов, между которыми движутся электроны. При этом движущиеся электроны периодически присоединяются к катионам, таким образом нейтрализуя их заряд, а отдельные нейтральные атомы металлов взамен «отпускают» часть своих электронов, превращаясь, в свою очередь, в катионы. Фактически, «свободные» электроны принадлежат не отдельным атомам, а всему кристаллу.

Такие особенности строения приводят к тому, что металлы хорошо проводят тепло и электрический ток, часто обладают высокой пластичностью (ковкостью).
Разброс значений температур плавления металлов очень велик. Так, например, температура плавления ртути составляет примерно минус 39 о С (жидкая в обычных условиях), а вольфрама — 3422 °C. Следует отметить, что в обычных условиях все металлы, кроме ртути, являются твердыми веществами.

Связи между ионами в кристалле очень прочные и устойчивые.Поэтому вещества с ионной решёткой обладают высокой твёрдостью и прочностью, тугоплавки и нелетучи.

Вещества с ионной кристаллической решеткой обладают следующими свойствами:

1. Относительно высокой твердостью и прочностю;

2. Хрупкостью;

3. Термостойкостью;

4. Тугоплавкостью;

5. Нелетучестью.

Примеры: соли – хлорид натрия, карбонат калия, основания – гидрооксид кальция, гидрооксид натрия.

4. Механизм образования ковалентной связи (обменный и донорно-акцепторный).

Каждый атом стремится завершить свой внешний электронный уровень, чтобы уменьшить потенциальную энергию. Поэтому ядро одного атома притягивается к себе электронную плотность другого атома и наоборот, происходит наложение электронных облаков двух соседних атомов.

Демонстрация аппликации и схемы образования ковалентной неполярной химической связи в молекуле водорода. (Учащиеся записывают и зарисовывают схемы).

Вывод: Связь между атомами в молекуле водорода осуществляется за счет общей электронной пары. Такая связь называется ковалентной.

Какую связь называют ковалентной неполярной? (Учебник стр. 33).

Составление электронных формул молекул простых веществ неметаллов:

CI CI - электронная формула молекулы хлора,

CI -- CI - структурная формула молекула хлора.

N N - электронная формула молекулы азота,

N ≡ N - структурная формула молекулы азота.

Электроотрицательность. Ковалентные полярная и неполярная связи. Кратность ковалентной связи.

Но молекулы могут образовывать и разные атомы неметаллов и в этом случае общая электронная пара будет смещаться к более электроотрицательному химическому элементу.

Изучить материал учебника на стр. 34

Вывод: Металлы имеют более низкое значение электроотрицательности, чем неметаллы. И между ними она сильно отличается.

Демонстрация схемы образования полярной ковалентной связи в молекуле хлороводорода.

Общая электронная пара смещена к хлору, как более электроотрицательному. Значит это ковалентная связь. Она образована атомами, электроотрицательности которых несильно отличаются, поэтому это ковалентная полярная связь.



Составление электронных формул молекул йодоводорода и воды:

H J - электронная формула молекулы йодоводорода,

H → J - структурная формула молекулы йодоводорода.

H O - электронная формула молекулы воды,

Н →О - структурная формула молекулы воды.

Самостоятельная работа с учебником: выписать определение электроотрицательности.

Молекулярные и атомные кристаллические решетки. Свойства веществ с молекулярными и атомными кристаллическими решетками

Самостоятельная работа с учебником.

Вопросы для самоконтроля

Атом, какого химического элемента имеет заряд ядра +11

– Записать схему электронного строения атома натрия

– Внешний слой завершен?

– Как добиться завершения заполнения электронного слоя?

– Составить схему отдачи электрона

– Сравнить строение атома и иона натрия

Сравнить строение атома и иона инертного газа неона.

Определить атом, какого элемента с количеством протонов 17.

– Запишите схему электронного строения атома.

– Слой завершен? Как этого добиться.

– Составить схему завершения электронного слоя хлора.

Задание по группам:

1-3 группа: Cоставьте электронные и структурные формулы молекул веществ и укажите тип связи Br 2 ; NH 3 .

4-6 группы: Cоставьте электронные и структурные формулы молекул веществ и укажите тип связи F 2 ; HBr.

Два ученика работают у дополнительной доски с этим же заданием для образца к самопроверке.

Устный опрос.

1. Дайте определение понятия «электроотрицательность».

2. От чего зависит электроотрицательность атома?

3. Как изменяется электроотрицательность атомов элементов в периодах?

4. Как изменяется электроотрицательность атомов элементов в главных подгруппах?

5. Сравните электроотрицательность атомов металлов и неметаллов. Отличаются ли способы завершения внешнего электронного слоя, характерные для атомов металлов и неметаллов? Каковы причины этого?



7. Какие химические элементы способны отдавать электроны, принимать электроны?

Что происходит между атомами при отдаче и принятии электронов?

Как называют частицы, образовавшиеся из атома в результате отдачи или присоединения электронов?

8. Что произойдет при встрече атомов металла и неметалла?

9. Как образуется ионная связь?

10. Химическая связь, образуемая за счет образования общих электронных пар называется …

11. Ковалентная связь бывает … и …

12. В чем сходство ковалентной полярной и ковалентной неполярной связи? От чего зависит полярность связи?

13. В чем различие ковалентной полярной и ковалентной неполярной связи?


ПЛАН ЗАНЯТИЯ № 8

Дисциплина: Химия.

Тема: Металлическая связь. Агрегатные состояния веществ и водородная связь.

Цель занятия: Сформировать понятие об химических связях на примере металлической связи. Добиться понимания механизма образования связи.

Планируемые результаты

Предметные: формировании кругозора и функциональной грамотности человека для решения практических задач; умение обрабатывать, объяснять результаты; готовность и способность применять методы познания при решении практических задач;

Метапредметные: использование различных источников для получения химической информации, умение оценить ее достоверность для достижения хороших результатов в профессиональной сфере;

Личностные: умение использовать достижения современной химической науки и химических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;

Норма времени: 2 часа

Вид занятия: Лекция.

План занятия:

1. Металлическая связь. Металлическая кристаллическая решетка и металлическая химическая связь.

2. Физические свойства металлов.

3. Агрегатные состояния веществ. Переход вещества из одного агрегатного состояния в другое.

4. Водородная связь

Оснащение: Периодическая система химических элементов, кристаллическая решетка, раздаточный материал.

Литература:

1. Химия 11 класс: учеб. для общеобразоват. организаций Г.Е. Рудзитис, Ф.Г. Фельдман. – М.:Просвещение, 2014. -208 с.: ил..

2. Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования / О.С.Габриелян, И.Г. Остроумов. – 5 - изд., стер. – М.: Издательский центр «Академия», 2017. – 272с., с цв. ил.

Преподаватель: Тубальцева Ю.Н.

Как мы знаем, все материальные вещества могут пребывать в трех базовых состояниях: жидком, твердом, и газообразном. Правда есть еще состояние плазмы, которое ученые считают ни много ни мало четвертым состоянием вещества, но наша статья не о плазме. Твердое состояние вещества потому твердое, так как имеет особую кристаллическую структуру, частицы которой находятся в определенном и четко заданном порядке, создавая, таким образом, кристаллическую решетку. Строение кристаллической решетки состоит из повторяющихся одинаковых элементарных ячеек: атомов, молекул, ионов, других элементарных частиц, связанных между собой различными узлами.

Виды кристаллических решеток

В зависимости от частиц кристаллической решетки существует четырнадцать типов оной, приведем наиболее популярные из них:

  • Ионная кристаллическая решетка.
  • Атомная кристаллическая решетка.
  • Молекулярная кристаллическая решетка.
  • кристаллическая решетка.

Ионная кристаллическая решетка

Главной особенностью строения кристаллической решетки ионов являются противоположные электрические заряды, собственно, ионов, вследствие чего образуется электромагнитное поле, определяющее свойства веществ, имеющих ионную кристаллическую решетку. А это тугоплавкость, твердость, плотность и возможность проводить электрический ток. Характерным примером ионной кристаллической решетки может быть поваренная соль.

Атомная кристаллическая решетка

Вещества с атомной кристаллической решеткой, как правило, имеют в своих узлах, состоящих собственно из атомов сильные . Ковалентная связь происходит, когда два одинаковых атома делятся друг с другом по-братски электронами, образуя, таким образом, общую пару электронов для соседних атомов. Из-за этого ковалентные связи сильно и равномерно связывают атомы в строгом порядке – пожалуй, это самая характерная черта строения атомной кристаллической решетки. Химические элементы с подобными связями могут похвастаться своей твердостью, высокой температурой плавления. Атомную кристаллическую решетку имеют такие химические элементы как алмаз, кремний, германий, бор.

Молекулярная кристаллическая решетка

Молекулярный тип кристаллической решетки характеризуется наличием устойчивых и плотноупакованных молекул. Они располагаются в узлах кристаллической решетки. В этих узлах они удерживаются такими себе вандервальсовыми силами, которые в десять раз слабее сил ионного взаимодействия. Ярким примером молекулярной кристаллической решетки является лед – твердое вещество, имеющее однако свойство переходить в жидкое – связи между молекулами кристаллической решетки совсем слабенькие.

Металлическая кристаллическая решетка

Тип связи металлической кристаллической решетки гибче и пластичнее ионной, хотя внешне они весьма похожи. Отличительной особенностью ее является наличие положительно заряженных катионов (ионов метала) в узлах решетки. Между узлами живут электроны, участвующие в создании электрического поля, эти электроны еще называются электрическим газом. Наличие такой структуры металлической кристаллической решетки объясняет ее свойства: механическую прочность, тепло и электропроводность, плавкость.

Кристаллические решетки, видео

И в завершение подробное видео пояснения о свойствах кристаллических решеток.

С древнейших времен металлы играют огромную роль в развитии человечества. Внедрение их в повседневную жизнь произвело настоящую революцию как в способах обработки материалов, так и в восприятии человеком окружающей действительности. Современная промышленность и сельское хозяйство, транспорт и инфраструктура невозможны без применения металлов, использования их полезных качеств и свойств. Эти качества, в свою очередь, определяются внутренней структурой данного класса химических соединений, в основе которой лежит кристаллическая решетка.

Понятие и сущность кристаллической решетки

С точки зрения внутреннего устройства любое вещество может находиться в одном из трех состояний - жидком, газообразном и твердом. При этом именно последнее характеризуется наибольшей устойчивостью, что обусловлено тем, что кристаллическая решетка подразумевает не только четкое расположение атомов или молекул в строго определенных местах, но и необходимость приложения достаточно большой силы, чтобы связи между этими элементарными частицами разорвать.

Особенности ионной решетки

Структура любого вещества, находящегося в твердом состоянии, обязательно предполагает периодическую повторяемость молекул и атомов сразу в трех измерениях. При этом в зависимости от того, что находится в узловых пунктах, кристаллическая решетка может быть ионной, атомной, молекулярной и металлической. Что касается первой разновидности, то здесь базовыми компонентами служат разнополярно заряженные ионы, между которыми возникают и действуют так называемые кулоновские силы. При этом сила взаимодействия находится в прямой зависимости от радиусов заряженных частиц.

Такая решетка представляет собой сложную систему, состоящую из катионов металла, в пространстве между которыми перемещаются отрицательно заряженные электроны. Именно наличие этих элементарных частиц придает решетке устойчивость и твердость, ибо они служат своеобразными компенсаторами для положительно заряженных катионов.

Сила и слабость атомной решетки

Достаточно интересной с точки зрения строения является атомная кристаллическая решетка. Уже из названия можно сделать вывод, что в ее узлах располагаются атомы, удерживающиеся за счет ковалентных связей. Многие ученые в последние годы относят данный тип взаимодействия к семейству неорганических полимеров, так как строение данной молекулы во многом определяется валентностью входящих в ее состав атомов.

Основные характеристики молекулярной решетки

Молекулярная кристаллическая решетка является наименее устойчивой из всех представленных. Все дело в том, что уровень взаимодействия находящихся в ее узлах молекул крайне низкий, а энергетический потенциал определяется целым рядом факторов, основную роль в которых играют дисперсионные, индукционные и ориентационные силы.

Влияние кристаллической решетки на свойства объектов

Таким образом, кристаллическая решетка во многом определяет свойства того или иного вещества. Например, атомные кристаллы плавятся при чрезвычайно высокой температуре и обладают повышенной твердостью, а вещества с металлической решеткой являются прекрасными проводниками

Инструкция

Как легко можно догадаться из самого называния, металлический тип решетки встречается у металлов. Эти вещества характеризуются, как правило, высокой температурой плавления, металлическим блеском, твердостью, являются хорошими проводниками электрического тока. Запомните, что в узлах решеток такого типа находятся или нейтральные атомы или положительно заряженные ионы. В промежутках между узлами – электроны, миграция которых и обеспечивает высокую электропроводимость подобных веществ.

Ионный тип кристаллической решетки. Следует запомнить, что он присущ и солям. Характерный – кристаллы всем известной поваренной соли, хлорида натрия. В узлах таких решеток попеременно чередуются положительно и отрицательно заряженные ионы. Такие вещества, как правило, тугоплавки, с малой летучестью. Как легко догадаться, они имеют ионный тип .

Атомный тип кристаллической решетки присущ простым веществам – неметаллам, которые при нормальных условиях представляют собою твердые тела. Например, сере, фосфору, . В узлах таких решеток находятся нейтральные атомы, связанные друг с другом ковалентной химической связью. Таким веществам свойственна тугоплавкость, нерастворимость в воде. Некоторым (например, углероду в виде ) – исключительно высокая твердость.

Наконец, последний тип решетки - молекулярный. Он встречается у веществ, находящихся при нормальных условиях в жидком или газообразном виде. Как опять-таки легко можно понять из , в узлах таких решеток – молекулы. Они могут быть как неполярного вида (у простых газов типа Cl2, О2), так и полярного вида (самый известный пример – вода H2O). Вещества с таким типом решетки не проводят ток, летучи, имеют низкие температуры плавления.

Источники:

  • тип решетки

Температуру плавления твердого вещества измеряют для определения степени его чистоты. Примеси в чистом веществе обычно понижают температуру плавления или увеличивают интервал, в котором плавится соединение. Метод с использованием капилляра является классическим для контроля содержания примесей.

Вам понадобится

  • - испытуемое вещество;
  • - стеклянный капилляр, запаянный с одного конца (диаметром 1 мм);
  • - стеклянная трубка диаметром 6-8 мм и длиной не менее 50 см;
  • - нагреваемый блок.

Инструкция

Предварительно высушенное испытуемое разотрите в ступке в мельчайший . Аккуратно возьмите капилляр и открытым концом погрузите в вещество, при этом некоторое его количество должно попасть в капилляр.

Поставьте стеклянную трубку вертикально на твердую поверхность и несколько раз бросьте через нее капилляр запаянным концом вниз. Это способствует уплотнению вещества. Для определения температуры столбик вещества в капилляре должен быть около 2-5 мм.

Поместите термометр с капилляром в нагреваемый блок и наблюдайте за изменениями испытуемого вещества при повышении температуры. Термометр до и в процессе нагревания не должен касаться стенок блока и других сильно нагретых поверхностей, иначе он может лопнуть.

Отметьте температуру, при которой появляются первые капли в капилляре (начало плавления ), и температуру, при которой исчезают последние вещества (конец плавления ). В этом интервале вещество начинает спадать до полного перехода в жидкое состояние. При проведении анализа также обратите внимание на изменение или разложение вещества.

Повторите измерения еще 1-2 раза. Результаты каждого измерения представьте в виде соответствующего температурного интервала, в течение которого вещество переходит из твердого состояния в жидкое. В завершение анализа сделайте заключение о чистоте испытуемого вещества.

Видео по теме

В кристаллах химические частицы (молекулы, атомы и ионы) расположены в определенном порядке, в некоторых условиях они образуют правильные симметричные многогранники. Выделяют четыре типа кристаллических решеток - ионные, атомные, молекулярные и металлические.

Кристаллы

Кристаллическое состояние характеризуется наличием дальнего порядка в расположении частиц, а также симметрией кристаллической решетки. Твердыми кристаллами называют трехмерные образования, у которых один и тот же элемент структуры повторяется во всех направлениях.

Правильная форма кристаллов обусловлена их внутренним строением. Если в них заменить молекулы, атомы и ионы точками вместо центров тяжести этих частиц, получится трехмерное регулярное распределение - . Повторяющиеся элементы ее структуры называют элементарными ячейками, а точки - узлами кристаллической решетки. Выделяют несколько типов кристаллов в зависимости от частиц, которые их образуют, а также от характера химической связи между ними.

Ионные кристаллические решетки

Ионные кристаллы образуют анионы и катионы, между которыми есть . К данному типу кристаллов относятся соли большинства металлов. Каждый катион притягивается r аниону и отталкивается от других катионов, поэтому в ионном кристалле невозможно выделить одиночные молекулы. Кристалл можно рассматривать как одну огромную , причем ее размеры не ограничены, она способна присоединять новые ионы.

Атомные кристаллические решетки

В атомных кристаллах отдельные атомы объединены ковалентными связями. Как и ионные кристаллы, их также можно рассматривать как огромные молекулы. При этом атомные кристаллы очень твердые и прочные, плохо проводят электричество и тепло. Они практически нерастворимы, для них характерна низкая реакционная способность. Вещества с атомными решетками плавятся при очень высоких температурах.

Молекулярные кристаллы

Молекулярные кристаллические решетки образуются из молекул, атомы которых объединены ковалентными связями. Из-за этого между молекулами действуют слабые молекулярные силы. Такие кристаллы отличаются малой твердостью, низкой температурой плавления и высокой текучестью. Вещества, которые они образуют, а также их расплавы и растворы плохо проводят электрический ток.

Металлические кристаллические решетки

В кристаллических решетках металлов атомы расположены с максимальной плотностью, их связи являются делокализованными, они распространяются на весь кристалл. Такие кристаллы непрозрачны, отличаются металлическим блеском, легко деформируются, при этом хорошо проводят электричество и тепло.

Данная классификация описывает лишь предельные случаи, большинство кристаллов неорганических веществ принадлежит к промежуточным типам - молекулярно-ковалентным, ковалентно- и др. В качестве примера можно привести кристалл графита, внутри каждого слоя у него ковалентно-металлические связи, а между слоями - молекулярные.

Источники:

  • alhimik.ru, Твердые вещества

Алмаз - это минерал, относящийся к одной из аллотропных модификаций углерода. Отличительной чертой его является высокая твердость, которая по праву приносит ему звание самого твердого вещества. Алмаз достаточно редкий минерал, но вместе с этим и самый широко распространенный. Исключительная его твердость находит свое применение в машиностроении и промышленности.

Инструкция

Алмаз имеет атомную кристаллическую решетку. Атомы углерода, составляющие основу молекулы, располагаются в виде тетраэдра, благодаря чему алмаз имеет такую высокую прочность. Все атомы связаны прочными ковалентными связями, которые образуются, исходя из электронного строения молекулы.

Атом углерода имеет sp3-гибридизацию орбиталей, которые располагаются под углом в 109 градусов и 28 минут. Перекрывание гибридных орбиталей происходит по прямой линии в горизонтальной плоскости.

Таким образом, при перекрывании орбиталей под таким углом образуется центрированный

 

 

Это интересно: