→ Мышьяк история названия. Химические свойства мышьяка

Мышьяк история названия. Химические свойства мышьяка

Мышьяк - химический элемент с атомным номером 33 в периодической системе, обозначается символом As. Представляет собой хрупкий полуметалл стального цвета.

Нахождение в природе мышьяка

Мышьяк - рассеянный элемент. Содержание в земной коре 1,7 10-4% по массе. Это вещество может встречаться в самородном состоянии, имеет вид металлически блестящих серых скорлупок или плотных масс, состоящих из маленьких зернышек. Известно около 200 мышьяк-содержащих минералов. В небольших концентрациях часто содержится в свинцовых, медных и серебряных рудах. Довольно часто встречаются два природных соединения мышьяка с серой: оранжево-красный прозрачный реальгар AsS и лимонно-желтый аурипигмент As2S3. Минерал, имеющий промышленное значение - арсенопирит (мышьяковый колчедан) FeAsS или FeS2 FeAs2, также добывают мышьяковистый колчедан - лёллингит (FeAs2).

Получение мышьяка

Существует множество способов получения мышьяка: сублимацией природного мышьяка, способом термического разложения мышьякового колчедана, восстановлением мышьяковистого ангидрида и др. В настоящее время для получения металлического мышьяка чаще всего нагревают арсенопирит в муфельных печах без доступа воздуха. При этом освобождается мышьяк, пары которого конденсируются и превращаются в твердый мышьяк в железных трубках, идущих от печей, и в особых керамиковых приемниках. Остаток в печах потом нагревают при доступе воздуха, и тогда мышьяк превращается в As2O3. Металлический мышьяк получается в довольно незначительных количествах, и главная часть мышьякосодержащих руд перерабатывается в белый мышьяк, то есть в триоксид мышьяка - мышьяковистый ангидрид As2О3.

Применение мышьяка

  • Применение Мышьяка в металлургии - используется для легирования сплавов свинца, идущих на приготовление дроби, так как при отливке дроби башенным способом капли сплава мышьяка со свинцом приобретают строго сферическую форму, и кроме того, прочность и твёрдость свинца возрастают.
  • Применение в электротехнике - Мышьяк особой чистоты (99,9999 %) используется для синтеза ряда практически очень ценных и важных полупроводниковых материалов - арсенидов и сложных алмазоподобных полупроводников.
  • Применение в качестве красителя - сульфидные соединения мышьяка - аурипигмент и реальгар - используются в живописи в качестве красок.
  • Применение в кожевенной отрасли промышленности - используется в качестве средств для удаления волос с кожи.
  • Применение в пиротехнике - реальгар употребляется для получения «греческого», или «индийского», огня, возникающего при горении смеси реальгара с серой и селитрой (ярко-белое пламя).
  • Применение в медицине - многие из мышьяковых соединений в очень малых дозах применяются в качестве лекарств для борьбы с малокровием и рядом тяжелых заболеваний, так как оказывают клинически значимое стимулирующее влияние на ряд функций организма, в частности, на кроветворение. Из неорганических соединений мышьяка мышьяковистый ангидрид может применяться в медицине для приготовления пилюль и в зубоврачебной практике в виде пасты как некротизирующее лекарственное средство (тот самый «мышьяк», который закладывают в канал зуба перед удалением нерва и пломбированием). В настоящее время препараты мышьяка применяются в зубоврачебной практике редко из-за токсичности и возможности проведения безболезненной денервации зуба под местной анестезией.
  • Применение в производстве стекла - трехокись мышьяка делает стекло «глухим», т.е. непрозрачным. Однако небольшие добавки этого вещества, напротив, осветляют стекло. Мышьяк и сейчас входит в рецептуры некоторых стекол, например, «венского» стекла для термометров и полухрусталя.
Для определения концентраций мышьяка в промышленности часто используется рентгено-флуоресцентный метод анализа состава веществ,что позволяет добиться результатов высокой точности в кратчайшие сроки. Для проведения рентгенофлуоресцентного анализа мышьяка требуются меры предосторожности. Т.к. Мышьяк является отравляеющим веществом.

Самая перспективная область применения мышьяка, несомненно, полупроводниковая техника. Особое значение приобрели в ней арсениды галлия GaAs и индия InAs. Арсенид галлия нужен также для важного направления электронной техники – оптоэлектроники, возникшей в 1963...1965 гг. на стыке физики твердого тела, оптики и электроники. Этот же материал помог создать первые полупроводниковые лазеры.

Почему арсениды оказались перспективными для полупроводниковой техники? Чтобы ответить на этот вопрос, напомним коротко о некоторых основных понятиях физики полупроводников: «валентная зона», «запрещенная зона» и «зона проводимости».

В отличие от свободного электрона, который может обладать любой энергией, электрон, заключенный в атоме, может обладать только некоторыми, вполне определенными значениями энергии. Из возможных значений энергии электронов в атоме складываются энергетические зоны. В силу известного принципа Паули, число электронов в каждой зоне не может быть больше некоего определенного максимума. Если зона пуста, то она, естественно, не может участвовать в создании проводимости. Не участвуют в проводимости и электроны целиком заполненной зоны: раз нет свободных уровней, внешнее электрическое поле не может вызывать перераспределения электронов и тем самым создать электрический ток. Проводимость возможна лишь в частично заполненной зоне. Поэтому тела с частично заполненной зоной относят к металлам, а тела, у которых энергетический спектр электронных состояний состоит из заполненных и пустых зон, – к диэлектрикам или полупроводникам.

Напомним также, что целиком заполненные зоны в кристаллах называются валентными зонами, частично заполненные и пустые – зонами проводимости, а энергетический интервал (или барьер) между ними – запрещенной зоной.

Основное различие между диэлектриками и полупроводниками состоит именно в ширине запрещенной зоны: если для преодоления ее нужна энергия больше 3 эВ, то кристалл относят к диэлектрикам, а если меньше – к полупроводникам.

По сравнению с классическими полупроводниками IV группы – германием и кремнием – арсениды элементов III группы обладают двумя преимуществами. Ширину запрещенной зоны и подвижность носителей заряда в них можно варьировать в более широких пределах. А чем подвижнее носители заряда, тем при больших частотах может работать полупроводниковый прибор. Ширину запрещенной зоны выбирают в зависимости от назначения прибора.

Так, для выпрямителей и усилителей, рассчитанных на работу при повышенной температуре, применяют материал с большой шириной запрещенной зоны, а для охлаждаемых приемников инфракрасного излучения – с малой.

Арсенид галлия приобрел особую популярность потому, что у него хорошие электрические характеристики, которые он сохраняет в широком интервале температур – от минусовых до плюс 500°C. Для сравнения укажем, что арсенид индия, не уступающий GaAs по электрическим свойствам, начинает терять их уже при комнатной температуре, германий – при 70...80, а кремний – при 150...200°C.

Мышьяк используют и в качестве легирующей добавки, которая придает «классическим» полупроводникам (Si, Ge) проводимость определенного типа. При этом в полупроводнике создается так называемый переходный слой, и в зависимости от назначения кристалла его легируют так, чтобы получить переходный слой на различной глубине. В кристаллах, предназначенных для изготовления диодов, его «прячут» поглубже; если же из полупроводниковых кристаллов будут делать солнечные батареи, то глубина переходного слоя – не более одного микрометра.

Мышьяк как ценную присадку используют и в цветной металлургии. Так, добавка к свинцу 0,2...1% As значительно повышает его твердость. Дробь, например, всегда делают из свинца, легированного мышьяком – иначе не получить строго шарообразной формы дробинок.

Добавка 0,15...0,45% мышьяка в медь увеличивает ее прочность на разрыв, твердость и коррозионную стойкость при работе в загазованной среде. Кроме того, мышьяк увеличивает текучесть меди при литье, облегчает процесс волочения проволоки.

Добавляют мышьяк в некоторые сорта бронз, латуней, баббитов, типографских сплавов.

И в то же время мышьяк очень часто вредит металлургам. В производстве стали и многих цветных металлов умышленно идут на усложнение процесса – лишь бы удалить из металла весь мышьяк. Присутствие мышьяка в руде делает производство вредным. Вредным дважды: во-первых, для здоровья людей; во-вторых, для металла – значительные примеси мышьяка ухудшают свойства почти всех металлов и сплавов.

Все соед. мышьяка, р-римые в воде и слабокислых средах (напр., желудочный сок), чрезвычайно ядовиты; ПДК в воздухе мышьяка и его соед. (кроме AsH3) в пересчете на мышьяк 0,5 мг/м3. Соед. As (III) более ядовиты, чем соед. As(V). Из неорг. соед. особенно опасны As2O3 и AsH3. При работе с мышьяком и его соед. необходимы: полная герметизация аппаратуры, удаление пыли и газов интенсивной вентиляцией, соблюдение личной гигиены (противопылевая одежда, очки, перчатки, противогаз), частый медицинский контроль; к работе не допускаются женщины и подростки. При остром отравлении мышьяком наблюдаются рвота, боли в животе, понос, угнетение центр. нервной системы. Помощь и противоядия при отравлении мышьяком: прием водных р-ров Na2S2O3, промывание желудка, прием молока и творога; специфич. противоядие - унитиол. Особая проблема состоит в удалении мышьяка из отходящих газов, технол. вод и побочных продуктов переработки руд и концентратов цветных и редких металлов и железа. Наиб. перспективен способ захоронения мышьяка путем перевода его в практически нерастворимые сульфидные стекла.

Мышьяк известен с глубокой древности. Еще Аристотель упоминал его прир. сернистые соединения. Неизвестно, кто первый получил элементарный мышьяк, обычно это достижение приписывают Альберту Великому ок. 1250. Хим. элементом мышьяк признан А. Лавуазье в 1789.

Таков элемент №33, заслуженно пользующийся скверной репутацией, и тем не менее во многих случаях очень полезный.

Содержание мышьяка в земной коре всего 0,0005%, но этот элемент достаточно активен, и потому минералов, в состав которых входит мышьяк, свыше 120. Главный промышленный минерал мышьяка – арсенопирит FeAsS. Крупные медно-мышьяковые месторождения есть в США, Швеции, Норвегии и Японии, мышьяково-кобальтовые – в Канаде, мышьяково-оловянные – в Боливии и Англии. Кроме того, известны золото-ышьяковые месторождения в США и Франции. Россия располагает многочисленными месторождениями мышьяка в Якутии и на Кавказе, в Средней Азии и на Урале, в Сибири и на Чукотке, в Казахстане и в Забайкалье. Мышьяк – один из немногих элементов, спрос на которые меньше, чем возможности их производства. Мировое произ-во мышьяка (без социалистич. стран) в пересчете на As2O3 ок. 50 тыс. т (1983); из них получают ~11 т элементарного мышьяка особой чистоты для синтеза полупроводниковых соединений.

Рентгенофлуоресцентный метод анализа мышьяка довольно прост и безопасен, в отличии от химического метода. Чистый мяшьяк прессуется в таблетки и используется как эталон. ГОСТ 1293.4-83, ГОСТ 1367.1-83, ГОСТ 1429.10-77, ГОСТ 2082.5-81, ГОСТ 2604.11-85, ГОСТ 6689.13-92, ГОСТ 11739.14-99 Определение производится с помощью рентгенофлуоресцентного спектрометра. Наиболее зарекомендовавшими себя в данной области являютcя спектрометры edx 3600 B и edx 600.

Словарь медицинских терминов

мышьяк (Arsenicum; As)

химический элемент V группы периодической системы Д. И. Менделеева, атомный номер 33, атомная масса 74,9216; соединения М. ядовиты; некоторые из них применяются в качестве лекарственных средств, сельскохозяйственных. ядохимикатов.

Толковый словарь русского языка. Д.Н. Ушаков

мышьяк

мышьяка, мн. нет, м.

    Химический элемент, твердое вещество в больших дозах ядовитое, обычно входящее в состав разных минералов, употр. для химических, технических и медицинских целей.

    Препарат этого вещества, прописываемый при расстройстве общего питания и нервной системы (мед., апт.). Впрыскивать мышьяк.

Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.

мышьяк

А(-у), м. Химический элемент, твердое ядовитое вещество входящее в состав нек-рых минералов, а также препараты из этого вещества, употр. в медицине и технике.

прил. мышьяковый, -ая, -ое и мышьячный, -ая, -ое (устар.).

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

мышьяк

    Химический элемент, твердое ядовитое вещество блестяще-серого цвета, входящее в состав некоторых минералов.

    Лекарственный препарат, содержащий такое вещество (или его соединения), применяемый как общеукрепляющее, противомикробное и т.п. средство (в больших дозах - яд).

Энциклопедический словарь, 1998 г.

мышьяк

МЫШЬЯК (лат. Arsenicum) As, химический элемент V группы периодической системы, атомный номер 33, атомная масса 74,9216. Русское название от "мышь" (препараты мышьяка применялись для истребления мышей и крыс). Образует несколько модификаций. Обычный мышьяк (т. н. металлический, или серый) - хрупкие кристаллы с серебристым блеском; плотность 5,74 г/см3, при 615°С возгоняется. На воздухе окисляется и тускнеет. Добывают из сульфидных руд (минералы арсенопирит, аурипигмент, реальгар). Компонент сплавов с медью, свинцом, оловом и др. и полупроводниковых материалов. Соединения мышьяка физиологически активны и ядовиты; служили одними из первых инсектицидов (см., напр., Арсенаты металлов). Неорганические соединения мышьяка применяются в медицине как общеукрепляющие, тонизирующие средства, органические - как противомикробные и противопротозойные (при лечении сифилиса, амебиаза и др.).

Мышьяк

(лат. Arsenicum), As, химический элемент V группы периодической системы Менделеева, атомный номер 33, атомная масса 74,9216; кристаллы серо-стального цвета. Элемент состоит из одного устойчивого изотопа 75As. Историческая справка. Природные соединения М. с серой (аурипигмент As2S3, реальгар As4S4) были известны народам древнего мира, которые применяли эти минералы как лекарства и краски. Был известен и продукт обжигания сульфидов М. ≈ оксид М. (III) As2O3 («белый М.»). Название arsenikón встречается уже у Аристотеля; оно произведено от греч. ársen ≈ сильный, мужественный и служило для обозначения соединений М. (по их сильному действию на организм). Русское название, как полагают, произошло от «мышь» (по применению препаратов М. для истребления мышей и крыс). Получение М. в свободном состоянии приписывают Альберту Великому (около 1250). В 1789 А. Лавуазье включил М. в список химических элементов. Распространение в природе. Среднее содержание М. в земной коре (кларк) 1,7╥10-4% (по массе), в таких количествах он присутствует в большинстве изверженных пород. Поскольку соединения М. летучи при высоких температурах, элемент не накапливается при магматических процессах; он концентрируется, осаждаясь из горячих глубинных вод (вместе с S, Se, Sb, Fe, Co, Ni, Cu и др. элементами). При извержении вулканов М. в виде своих летучих соединений попадает в атмосферу. Так как М. многовалентен, на его миграцию оказывает большое влияние окислительно-восстановительная среда. В окислительных условиях земной поверхности образуются арсенаты (As5+) и арсениты (As3+). Это редкие минералы, встречающиеся только на участках месторождений М. Ещё реже встречается самородный М. и минералы As2+. Из многочисленных минералов М. (около 180) основное промышленное значение имеет лишь арсенопирит FeAsS (см. Мышьяковые руды). Малые количества М. необходимы для жизни. Однако в районах месторождении М. и деятельности молодых вулканов почвы местами содержат до 1% М., с чем связаны болезни скота, гибель растительности. Накопление М. особенно характерно для ландшафтов степей и пустынь, в почвах которых М. малоподвижен. Во влажном климате М. легко вымывается из почв. В живом веществе в среднем 3╥10-5% М., в реках 3╥10-7%. М., приносимый реками в океан, сравнительно быстро осаждается. В морской воде лишь 1╥10-7% М., но зато в глинах и сланцах 6,6╥10-4%. Осадочные железные руды, железомарганцевые конкреции часто обогащены М. Физические и химические свойства. М. имеет несколько аллотропических модификаций. При обычных условиях наиболее устойчив так называемый металлический, или серый, М. (a-As) ≈ серо-стальная хрупкая кристаллическая масса; в свежем изломе имеет металлический блеск, на воздухе быстро тускнеет, т. к. покрывается тонкой плёнкой As2O3. Кристаллическая решётка серого М. ромбоэдрическая (а = 4,123 Å, угол a = 54╟10", х = 0,226), слоистая. Плотность 5,72 г/см3 (при 20╟C), удельное электрическое сопротивление 35╥10-8ом×м, или 35╥10-6ом×см, температурный коэффициент электросопротивления 3,9╥10-3 (0╟≈100 ╟C), твёрдость по Бринеллю 1470 Мн/м2, или 147 кгс/мм2 (3≈4 по Моосу); М. диамагнитен. Под атмосферным давлением М. возгоняется при 615 ╟C не плавясь, т. к. тройная точка (см. Диаграмма состояния) a-As лежит при 816 ╟C и давлении 36 ат. Пар М. состоит до 800 ╟C из молекул As4, выше 1700 ╟C ≈ только из As2. При конденсации пара М. на поверхности, охлаждаемой жидким воздухом, образуется жёлтый М. ≈ прозрачные, мягкие как воск кристаллы, плотностью 1,97 г/см3, похожие по свойствам на белый фосфор . При действии света или при слабом нагревании он переходит в серый М. Известны также стекловидно-аморфные модификации: чёрный М. и бурый М., которые при нагревании выше 270╟C превращаются в серый М. Конфигурация внешних электронов атома М. 3d104s24p3. В соединениях М. имеет степени окисления + 5, + 3 и √ 3. Серый М. значительно менее активен химически, чем фосфор. При нагревании на воздухе выше 400╟C М. горит, образуя As2O3. С галогенами М. соединяется непосредственно; при обычных условиях AsF5 ≈ газ; AsF3, AsCl3, AsBr3 ≈ бесцветные легко летучие жидкости; AsI3 и As2l4 ≈ красные кристаллы. При нагревании М. с серой получены сульфиды: оранжево-красный As4S4 и лимонно-жёлтый As2S3. Бледно-жёлтый сульфид As2S5 осаждается при пропускании H2S в охлаждаемый льдом раствор мышьяковой кислоты (или её солей) в дымящей соляной кислоте: 2H3AsO4 + 5H2S = As2S5 + 8H2O; около 500╟C он разлагается на As2S3 и серу. Все сульфиды М. нерастворимы в воде и разбавленных кислотах. Сильные окислители (смеси HNO3 + HCl, HCl + KClO3) переводят их в смесь H3AsO4 и H2SO4. Сульфид As2S3 легко растворяется в сульфидах и полисульфидах аммония и щелочных металлов, образуя соли кислот ≈ тиомышьяковистой H3AsS3 и тиомышьяковой H3AsS4. С кислородом М. даёт окислы: оксид М. (III) As2O3 ≈ мышьяковистый ангидрид и оксид М. (V) As2O5 ≈ мышьяковый ангидрид. Первый из них образуется при действии кислорода на М. или его сульфиды, например 2As2S3 + 9O2 = 2As2O3 + 6SO2. Пары As2O3 конденсируются в бесцветную стекловидную массу, которая с течением времени становится непрозрачной вследствие образования мелких кристаллов кубической сингонии, плотность 3,865 г/см3. Плотность пара отвечает формуле As4O6: выше 1800╟C пар состоит из As2O3. В 100 г воды растворяется 2,1 г As2O3 (при 25╟C). Оксид М. (III) ≈ соединение амфотерное, с преобладанием кислотных свойств. Известны соли (арсениты), отвечающие кислотам ортомышьяковистой H3AsO3 и метамышьяковистой HAsO2; сами же кислоты не получены. В воде растворимы только арсениты щелочных металлов и аммония. As2O3 и арсениты обычно бывают восстановителями (например, As2O3 + 2I2 + 5H2O = 4HI + 2H3AsO4), но могут быть и окислителями (например, As2O3 + 3C = 2As + 3CO). Оксид М. (V) получают нагреванием мышьяковой кислоты H3AsO4 (около 200╟C). Он бесцветен, около 500╟C разлагается на As2O3 и O2. Мышьяковую кислоту получают действием концентрированной HNO3 на As или As2O3. Соли мышьяковой кислоты (арсенаты) нерастворимы в воде, за исключением солей щелочных металлов и аммония. Известны соли, отвечающие кислотам ортомышьяковой H3AsO4, метамышьяковой HAsO3, и пиромышьяковой H4As2O7; последние две кислоты в свободном состоянии не получены. При сплавлении с металлами М. по большей части образует соединения (арсениды). Получение и применение. М. получают в промышленности нагреванием мышьякового колчедана: FeAsS = FeS + As или (реже) восстановлением As2O3 углем. Оба процесса ведут в ретортах из огнеупорной глины, соединённых с приёмником для конденсации паров М. Мышьяковистый ангидрид получают окислительным обжигом мышьяковых руд или как побочный продукт обжига полиметаллических руд, почти всегда содержащих М. При окислительном обжиге образуются пары As2O3, которые конденсируются в уловительных камерах. Сырой As2O3 очищают возгонкой при 500≈600╟C. Очищенный As2O3 служит для производства М. и его препаратов. Небольшие добавки М. (0,2≈1,0% по массе) вводят в свинец, служащий для производства ружейной дроби (М. повышает поверхностное натяжение расплавленного свинца, благодаря чему дробь получает форму, близкую к сферической; М. несколько увеличивает твёрдость свинца). Как частичный заменитель сурьмы М. входит в состав некоторых баббитов и типографских сплавов. Чистый М. не ядовит, но все его соединения, растворимые в воде или могущие перейти в раствор под действием желудочного сока, чрезвычайно ядовиты; особенно опасен мышьяковистый водород . Из применяемых на производстве соединений М. наиболее токсичен мышьяковистый ангидрид. Примесь М. содержат почти все сульфидные руды цветных металлов, а также железный (серный) колчедан. Поэтому при их окислительном обжиге, наряду с сернистым ангидридом SO2, всегда образуется As2O3; большая часть его конденсируется в дымовых каналах, но при отсутствии или малой эффективности очистных сооружений отходящие газы рудообжигательных печей увлекают заметные количества As2O3. Чистый М., хотя и не ядовит, но при хранении на воздухе всегда покрывается налётом ядовитого As2O3. При отсутствии должной вентиляции крайне опасно травление металлов (железа, цинка) техническими серной или соляной кислотами, содержащими примесь М., т. к. при этом образуется мышьяковистый водород. С. А. Погодин. М. в организме. В качестве микроэлемента М. повсеместно распространён в живой природе. Среднее содержание М. в почвах 4╥10-4%, в золе растений ≈ 3╥10-5%. Содержание М. в морских организмах выше, чем в наземных (в рыбах 0,6≈4,7 мг в 1 кг сырого вещества, накапливается в печени). Среднее содержание М. в теле человека 0,08≈0,2 мг/кг. В крови М. концентрируется в эритроцитах, где он связывается с молекулой гемоглобина (причём в глобиновой фракции содержится его вдвое больше, чем в геме). Наибольшее количество его (на 1 г ткани) обнаруживается в почках и печени. Много М. содержится в лёгких и селезёнке, коже и волосах; сравнительно мало ≈ в спинномозговой жидкости, головном мозге (главным образом гипофизе), половых железах и др. В тканях М. находится в основной белковой фракции, значительно меньше ≈ в кислоторастворимой и лишь незначительная часть его обнаруживается в липидной фракции. М. участвует в окислительно-восстановительных реакциях: окислительном распаде сложных углеводов, брожении, гликолизе и т. п. Соединения М. применяют в биохимии как специфические ингибиторы ферментов для изучения реакций обмена веществ. М. в медицине. Органические соединения М. (аминарсон, миарсенол, новарсенал, осарсол) применяют, главным образом, для лечения сифилиса и протозойных заболеваний. Неорганические препараты М. ≈ натрия арсенит (мышьяковокислый натрий), калия арсенит (мышьяковистокислый калий), мышьяковистый ангидрид As2O3, назначают как общеукрепляющие и тонизирующие средства. При местном применении неорганические препараты М. могут вызывать некротизирующий эффект без предшествующего раздражения, отчего этот процесс протекает почти безболезненно; это свойство, которое наиболее выражено у As2O3, используют в стоматологии для разрушения пульпы зуба. Неорганические препараты М. применяют также для лечения псориаза. Полученные искусственно радиоактивные изотопы М. 74As (T1/2 = 17,5 сут) и 76As (T1/2 = 26,8 ч) используют в диагностических и лечебных целях. С их помощью уточняют локализацию опухолей мозга и определяют степень радикальности их удаления. Радиоактивный М. используют иногда при болезнях крови и др. Согласно рекомендациям Международной комиссии по защите от излучений, предельно допустимое содержание 76As в организме 11 мккюри. По санитарным нормам, принятым в СССР, предельно допустимые концентрации 76As в воде и открытых водоёмах 1╥10-7кюри/л, в воздухе рабочих помещений 5╥10-11кюри/л. Все препараты М. очень ядовиты. При остром отравлении ими наблюдаются сильные боли в животе, понос, поражение почек; возможны коллапс, судороги. При хроническом отравлении наиболее часты желудочно-кишечные расстройства, катары слизистых оболочек дыхательных путей (фарингит, ларингит, бронхит), поражения кожи (экзантема, меланоз, гиперкератоз), нарушения чувствительности; возможно развитие апластической анемии. При лечении отравлений препаратами М. наибольшее значение придают унитиолу (см. Антидоты). Меры предупреждения производственных отравлений должны быть направлены прежде всего на механизацию, герметизацию и обеспыливание технологического процесса, на создание эффективной вентиляции и обеспечение рабочих средствами индивидуальной защиты от воздействия пыли. Необходимы регулярные медицинские осмотры работающих. Предварительные медицинские осмотры производят при приёме на работу, а для работающих ≈ раз в полгода. Лит.: Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963, с. 700≈712; Погодин С. А., Мышьяк, в кн.: Краткая химическая энциклопедия, т. 3, М., 1964; Вредные вещества в промышленности, под общ. ред. Н. В. Лазарева, 6 изд., ч. 2, Л., 197мышьяка , с постоянными ознобами, истощенной верхней половиной тела, с морщинистой и желтой кожей, поносом, увеличенными печенью и селезенкой, у которых можно прощупать мезентериальные лимфоузлы.

Когда падре Анхель кончил молиться, Тринидад снова спросила у него денег на мышьяк .

Аптекарь полагал, что, живя среди склянок, возясь со всякими снадобьями: мятой, мышьяком , арникой, ипекакуаной, он в конце концов так пропитался ароматами лекарственных трав, что, по всей вероятности, не понравился дикарям, а может быть, наоборот: из-за аптечного запаха они берегли его на закуску.

Испробовав обычные яды, стали применять фтористый натрий и ацетат фтора, но они, как и фосфид цинка и окись мышьяка , не дали результата.

Солдаты, которым довелось обращаться к капитану по поводу зубной боли, утверждали, что он принципиально никогда не пользовался бормашиной, никогда не накладывал мышьяк и не ставил пломб.

На ужин -- свежую тушенку, пропитанную слабым раствором марганца, серной кислоты, мышьяка и другой гадости, о которой знал только Штирлиц.

Гера ел степенно, показывая, что его эти странные манипуляции с гексаэдром, испещренным буквами, абсолютно не волнуют, однако было заметно, что любопытство в нем накапливается, как мышьяк в локонах злодейски отравленного Бонапарта.

Множество пылких и очаровательных дам также совершают самоубийства, они закалываются, топятся, пьют синильную кислоту, волчий корень, мышьяк , вскрывают себе вены, отказываются от пищи, бросаются под паровые катки, с колонны Нельсона, в главный чан пивоварни Гиннесса, задыхаются, сунув голову в газовую печь, вешаются на модных подвязках, выбрасываются из окон различных этажей.

Аббасидский халиф Период скрытых имамов Первая степень посвящения в исмаилитской организации, всего было семь Церемониймейстер Мера веса - 409,5 г Имеется ввиду сульфат мышьяка Одежда, род туники Сосуд с красной глиной для печати Полоска бумаги для заклеивания письма 757 г.

С видом сосредоточенным, как будто это было самое любопытное и важное дело, помогал учителю пропитывать доску ядовитым раствором для предохранения от червоточин -- водкою с двусернистым мышьяком и сулемою.

Сосед стал загибать пальцы: - Барий, теллур, мышьяк , ртуть, сурьма, цианиды, мускарин, сулема.

Однако позднее возникла другая версия, объяснявшая такое количество мышьяка в волосах Наполеона тем, что мышьяк в то время входил в состав обойных красок, и, возможно, в сыром океанском климате обои в комнатах изгнанника давали вредные для здоровья испарения.

Зато там упоминалась смерть матери Бартлетта в 1852 году от прободной язвы и его дяди с отцовской стороны в 1851 году от острой дизентерии -- болезней, похожих по симптоматике на отравление мышьяком .

Симс намеревался обрабатывать мышьяком золото, но Смол отговорил его, пообещав достать нужное Симсу черное золото.

Уникальность мышьяка состоит в том, что его можно найти повсюду – в горных породах, минералах, воде, почве, в животных и растениях. Его даже называют вездесущим элементом. Мышьяк распределяется по разным географическим регионам Земли благодаря летучести его соединений и высокой их растворимости в воде. Если климат региона влажный, то элемент вымывается из земли и затем уносится грунтовыми водами. В поверхностных водах и в глубинах рек содержится от 3 мкг/л до 10 мкг/л вещества, а в морской и океанской воде – гораздо меньше, около 1 мкг/л.

Мышьяк встречается в организме взрослого человека в количестве примерно 15 мг. Большая часть его содержится в печени , лёгких , тонком кишечнике и эпителии. Всасывание вещества происходит в желудке и кишечнике.
Антагонистами вещества являются фосфор, сера, селен, витамины E, C, а также некоторые аминокислоты. В свою очередь, вещество ухудшает всасывание организмом селена, цинка, витаминов A, E, C, фолиевой кислоты .
Секрет его пользы – в его количестве: в малой дозе он выполняет ряд полезных функций; а в больших является сильнейшим ядом.

Функции:

  • Улучшение усвоения фосфора и азота.
  • Стимулирование кроветворения.
  • Ослабление окислительных процессов.
  • Взаимодействие с белками, липоевой кислотой, цистеином.
Суточная потребность в данном веществе невелика – от 30 до 100 мкг.

Мышьяк как химический элемент

Мышьяк причислен к химическим элементам V группы периодической таблицы и относится к семейству азота. В природных условиях это вещество представлено единственным стабильным нуклидом. Искусственным путём получено более десятка радиоактивных изотопов мышьяка, обладающих широким диапазоном значений периода полураспада - от пары минут до пары месяцев. Образование термина связано с его применением для истребления грызунов – мышей и крыс. Латинское название Arsenicum (As) образовалось от греческого слова «арсен », что значит: мощный, сильный .

Исторические сведения

Мышьяк в чистом виде был открыт во время алхимических экспериментов в Средние века. А его соединения были известны людям издавна, их использовали для производства лекарств и красок. На сегодняшний день особенно многогранно мышьяк используется в металлургии.

Один из периодов развития человечества историки назвали бронзовым. В это время люди перешли от каменного оружия к усовершенствованному бронзовому оружию. Бронза является соединением (сплавом ) олова с медью. Как считают историки, первая бронза была отлита в долине Тигра и Евфрата, примерно в 30 вв. до н.э. В зависимости от процентного состава входящих в сплав составляющих, бронза, отлитая у разных кузнецов, могла обладать разными свойствами. Учёные выяснили, что наилучшая бронза с ценными свойствами – это сплав меди, который содержит до 3% олова и до 7% мышьяковистых веществ. Такая бронза легко отливалась и лучше ковалась. Вероятно, при выплавке перепутали медную руду с продуктами выветривания медно-мышьяковых сульфидных минералов, которые имели похожий вид. Древние мастера оценили хорошие свойства сплава и далее уже целенаправленно искали залежи мышьяковых минералов. Чтобы их найти, использовали специфическое свойство этих минералов при нагревании давать чесночный запах. Но со временем выплавка бронзы с содержанием мышьяковистых соединений прекратилась. Вероятнее всего, это случилось из-за того, что при обжиге мышьяксодержащих вещества очень часто возникали отравления .

Конечно, в далёком прошлом данный элемент был известен только в виде его минералов. В Древнем Китае знали твёрдый минерал под названием реальгар, который, как известно сейчас, является сульфидом состава As4S4. Слово «реальгар » в переводе с арабского означает «рудниковая пыль ». Этот минерал использовали для осуществления резьбы по камню, но у него был один существенный недостаток: на свету или при нагревании реальгар «портился», поскольку под влиянием термической реакции превращался в совершенно другое вещество As2S3.

Учёный и философ Аристотель в 4 в. до н.э. дал своё название этому минералу – «сандарак ». Спустя три столетия римский учёный и писатель Плиний Старший вместе с врачом и ботаником Диоскоридом описали другой минерал под названием аурипигмент . Латинское название минерала переводится «золотая краска ». Этот минерал использовался в качестве желтого красителя.

В средние века алхимики выделяли три формы вещества: жёлтый мышьяк (являющийся сульфидом As2S3 ), красный (сульфид As4S4 ) и белый (оксид As2O3 ). Белый образуется при возгонке некоторых примесей мышьяка во время обжига медных руд, которые содержат этот элемент. Он конденсировался из газовой фазы, и в виде белого налёта оседал, после чего его и собирали.

В 13 веке алхимики при нагреве жёлтого мышьяка и мыла получили металлоподобное вещество, которое, возможно, являлось первым образцом чистого вещества, полученного искусственным путём. Но полученное вещество нарушало представления алхимиков о мистической «связи» семи известных им металлов с семью астрономическими объектами - планетами; именно поэтому алхимики называли полученное вещество «незаконнорожденным металлом». Они заметили за ним одно интересное свойство – вещество могло придать меди белый цвет.

Мышьяк был совершенно точно идентифицирован как самостоятельное вещество в начале 17 века, когда аптекарь Иоганн Шредер при восстановлении древесным углём оксида, получил его в чистом виде. Несколько лет спустя французский врач и химик Никола Лемери сумел получить это вещество, нагревая его оксид в смеси с поташом и мылом. В следующем веке его уже хорошо знали и называли необычным «полуметаллом».

Шведский учёный Шееле получил опытным путём мышьяковистый газообразный водород и мышьяковую кислоту. В тоже время А.Л. Лавуазье признал это вещество самостоятельным химическим элементом.

Нахождение в природных условиях

Элемент часто встречается в природных условиях в соединениях с медью, кобальтом, никелем, железом. В земной коре его не так много – около 5 грамм на тонну, это примерно столько же, сколько олова, молибдена, германия, вольфрама и брома.



Состав минералов, которые образует данный химический элемент (на сегодняшний день их более 200 ), обусловлен «полуметаллическими» свойствами элемента. Он может находиться как в отрицательной, так и в положительной степени окисления и поэтому легко соединяется со многими другими элементами; при положительном окислении мышьяк играет роль металла (к примеру, в сульфидах ), при отрицательном – неметалла (в арсенидах ). Мышьяксодержащие минералы имеют сложный состав. Сам элемент может заменять собой в кристаллической решетке атомы сурьмы, серы, а также атомы металлов.

Многие соединения металлов и мышьяка, если судить по их составу, скорее относятся к интерметаллическим соединениям, нежели к арсенидам; часть из них отличается переменным содержанием основного элемента. В арсенидах может одновременно присутствовать сразу несколько металлов, и атомы этих металлов при близком радиусе ионов могут в произвольных соотношениях замещать друг друга в кристаллической решетке. Все минералы, причисляемые к арсенидам, имеют металлический блеск. Они непрозрачны, тяжелы, их твердость невелика.

Примером естественных арсенидов (их насчитывается примерно 25 ) могут служить такие минералы как скуттерудит, саффлорит, раммельсбергит, никельскуттерудит, никелин, лёллингит, сперрилит, маухерит, альгодонит, лангисит, клиносаффлорит. Эти арсениды обладают высокой плотностью и относятся к группе «сверхтяжёлых» минералов.

Самый распространённый минерал – арсенопирит (или, как его ещё называют, мышьяковый колчедан ). Интересным для химиков кажется строение тех минералов, в которых одновременно с серой присутствует мышьяк, и в которых он играет роль металла, поскольку группируется вместе с иными металлами. Это минералы арсеносульванит, жиродит, арсеногаухекорнит, фрейбергит, голдфилдит, теннантит, аргентотеннантит. Строение этих минералов очень сложное.

Такие природные сульфиды как реальгар, аурипигмент, диморфит, гетчеллит, обладают положительной степенью окисления As (лат. обозначение мышьяка ). Эти минералы выглядят как небольшие вкрапления, хотя изредка в некоторых местностях добывались кристаллы большого размера и веса.

Интересен тот факт, что природные соли мышьяковой кислоты, называющиеся арсенатами, выглядят очень по-разному. Эритрит имеет кобальтовую окраску, скородит, аннабергит и симплезит – зелёную. А гёрнесит, кёттигит, рузвельтит – совершенно бесцветные.

В центральном округе Швеции встречаются карьеры, в которых добывают железомарганцевую руду. В этих карьерах были найдены и описаны более пятидесяти образцов минералов, которые являются арсенатами. Часть этих арсенатов нигде больше не встречалась. Как полагают специалисты, эти минералы образовались при невысоких температурах как результат взаимодействия мышьяковой кислоты с другими веществами. Арсенаты являются продуктами окисления некоторых сульфидных руд. Обычно они не имеют никакой ценности, кроме эстетической. Такие минералы являются украшениями минералогических коллекций.

Названия минералам были даны разным образом: одни из них были названы в честь учёных, видных деятелей политики; другие были поименованы в соответствии с названием местности, в которой они были найдены; третьи были названы греческими терминами, обозначавшими их основные свойства (например, цвет ); четвертые были названы аббревиатурами, обозначавшими начальные буквы наименований других элементов.

К примеру, интересно образование старинного названия такого минерала как никелин. Раньше его называли купферникелем. Немецкие горняки, трудившиеся над разработкой меди пять - шесть столетий назад, суеверно боялись злого горного духа, которого называли Никелем. Немецкое слово «купфер » обозначало «медь ». Купферникелем они называли «чёртову», или «фальшивую» медь. Эта руда была очень похожа на медную, но медь из неё получить не удавалось. Зато она нашла своё применение в стекловарении. С её помощью окрашивали стёкла в зелёный цвет. Впоследствии из этой руды выделили новый металл, и назвали его никелем.

Чистый мышьяк достаточно инертен по своим химическим свойствам, и его можно обнаружить в самородном состоянии. Он выглядит, как сросшиеся иголочки или кубики. Такой самородок легко растереть в порошок. Он содержит до 15% примесей (кобальт, железо, никель, серебро и другие металлы ).

В почве содержание As составляет, как правило, от 0,1 мг/кг до 40 мг/кг. В тех местностях, где залегает мышьяковая руда, и в районе вулканов, почва может содержать очень большое количество As – до 8 г/кг. Именно такой показатель встречается в некоторых районах Новой Зеландии и Швейцарии. В таких районах гибнет флора, а животные болеют. Такая же ситуация характерна для пустынь и степей, где мышьяк из почвы не вымывается. По сравнению со средним содержанием, обогащёнными считаются и глинистые породы, поскольку в них содержится вчетверо больше мышьяковистых веществ.

Если чистое вещество превращается в результате биометилирования в летучее мышьякорганическое соединение, то его выносит из почвы не только вода, но и ветер. Биометилирование – это присоединение метильной группы, при котором образуется связь C–As. Этот процесс осуществляется при участии вещества метилкобаламин - это метилированное производное витамина B12. Биометилирование As происходит как в морской воде, так и в пресной. Это приводит к образованию таких мышьякорганических соединений как метиларсоновая и диметиларсиновая кислоты.

В тех районах, где нет специфического загрязнения, мышьячная концентрация составляет 0,01 мкг/м3, а в промышленных районах, где расположены электростанции и заводы, концентрация достигает уровня 1 мкг/м3. В районах, где находятся промышленные центры, выпадение мышьяка интенсивное и составляет до 40 кг/кв. км в год.

Летучие соединения мышьяка, когда не были ещё полностью изучены их свойства, принесли людям немало бед. Массовые отравления даже в 19 веке встречались нередко. Но причин отравления врачи не знали. А отравляющее вещество содержалось в зелёной краске для обоев и в штукатурке. Высокая влажность приводила к образованию плесени. Под действием этих двух факторов образовывались летучие мышьякорганические вещества.

Имеется предположение, что процесс образования летучих мышьякорганических производных мог стать причиной замедленного отравления императора Наполеона , которое его и привело к смерти. Это предположение базируется на том факте, что спустя 150 лет после смерти, в его волосах были найдены остатки мышьяка.

Мышьяковистые вещества в умеренных количествах содержатся в составе некоторых минеральных вод . Общепринятые нормативы устанавливают, что в лечебных минеральных водах концентрация мышьяка должна составлять не более 70 мкг/л. В принципе, даже если концентрация вещества будет выше, то к отравлению это может привести только при постоянном длительном употреблении.

Мышьяк может находиться в природных водах в различных соединениях и формах. Трёхвалентный мышьяк, например, во много раз токсичнее, чем пятивалентный.

Некоторые из морских водорослей могут накапливать мышьяк в такой концентрации, что являются опасными для людей. Такие водоросли вполне могут расти и даже размножаться в кислотной мышьяковистой среде. В некоторых странах их используют в качестве дератизационных средств (против крыс ).

Химические свойства

Иногда мышьяк называют металлом, но на самом деле – это скорее неметалл. Он не образует солей в соединении с кислотами, но сам по себе он является кислотообразующим веществом. Поэтому ещё его называют полуметаллом. Как и фосфор, мышьяк может существовать в разных аллотропных формах.

Одна из таких форм – серый мышьяк, достаточно хрупкое вещество. Его излом имеет яркий металлический блеск (поэтому второе его название - «металлический мышьяк» ). Электропроводность этого полуметалла по сравнению с медью 17 раз меньше, но при этом в 3,6 раза больше, чем у ртути. Чем выше температура, тем меньше электропроводность. Это типичное свойство металлов характерно и для данного полуметалла.

Если мышьяковые пары в течение короткого времени охладить до температуры –196 градусов (это температура жидкого азота ), то получится мягкое прозрачное вещество жёлтого цвета, по виду напоминающее жёлтый фосфор. Плотность этого вещества намного ниже, чем у металлического мышьяка. Жёлтый мышьяк и мышьяковые пары состоят из молекул, которые имеют форму тетраэдра (т.е. форма пирамиды с четырьмя основаниями ). Такую же форму имеют молекулы фосфора.

Под действием ультрафиолета, а также при нагревании, жёлтый мышьяк моментально переходит в серый; при этой реакции выделяется тепло. Если пары конденсируются в инертной атмосфере, то образуется еще одна форма данного элемента – аморфная. Если осаждать на стекле пары мышьяка, то образуется зеркальная плёнка.

Строение электронной внешней оболочки у данного элемента такое же, как у фосфора и азота. Мышьяк, как и фосфор, может образовывать три ковалентные связи.

Если воздух сухой, то As имеет устойчивую форму. От влажного воздуха он тускнеет и сверху покрывается чёрным оксидом. При воспламенении мышьяковые пары легко сгорают голубым пламенем.

As в чистом виде достаточно инертен; щелочи, вода и различные кислоты, которые не обладают окислительными свойствами, на него никак не воздействуют. Если взять разбавленную азотную кислоту, то она окислит чистый As до ортомышьяковистой кислоты, а если взять концентрированную, то она окислит до ортомышьяковой кислоты.

As реагирует с серой и галогенами. В реакциях с серой происходит образование сульфидов разного состава.

Мышьяк как яд

Все мышьячные соединения являются ядовитыми.

Острое отравление этими веществами проявляется болью в животе , поносом , рвотой , угнетением ЦНС. Симптоматика интоксикации данным веществом очень похожа на симптоматику холеры . Поэтому в судебной практике ранее нередко встречались случаи использования мышьяка в качестве яда. Наиболее успешно используемое с криминальной целью ядовитое соединение – триоксид мышьяка.

На тех территориях, где в воде и почве наблюдается переизбыток вещества, происходит его накопление в щитовидных железах у людей. Вследствие этого у них образуется эндемический зоб .

Отравление мышьяком

Симптоматика мышьяковистого отравления проявляется металлическим вкусом во рту, рвотой, сильными болями в животе. Позже могут наступить судороги или паралич . Отравление может привести к смерти. Наиболее общедоступное и известное противоядие при интоксикации мышьяком – это молоко. Основной белок молока – казеин. Он образует с мышьяком нерастворимое соединение, которое не всасывается в кровь.

Отравление происходит:
1. При вдыхании мышьяковистых соединений в виде пыли (чаще всего – в неблагоприятных производственных условиях ).
2. При употреблении отравленной воды и пищи.
3. При применении некоторых лекарственных средств. Избыток вещества депонируется в костном мозге, лёгких, почках , коже , кишечном тракте. Существует большое количество доказательств того, что неорганические соединения мышьяка являются канцерогенными. Из-за длительного употребления отравленной мышьяком воды или медикаментов, может развиться низкодифференцированный рак кожи (рак Боуэна ) или гемангиоэндотелиома печени.

При остром отравлении в качестве первой помощи требуется сделать промывание желудка. В стационарных условиях проводят гемодиализ для очистки почек. Для использования при остром и при хроническом отравлении применяют Унитиол – универсальный антидот. Дополнительно используют вещества-антагонисты: сера, селен, цинк, фосфор; и в обязательном порядке вводят комплекс витаминов и аминокислот.

Симптоматика передозировки и дефицита

Возможные признаки дефицита мышьяка проявляются снижением концентрации в крови триглицеридов , повышением фертильности, ухудшением развития и роста организма.

Мышьяк является весьма ядовитым веществом, единовременная доза в 50 мг может повлечь за собой летальный исход. Передозировка проявляется раздражительностью, аллергией , головной болью , дерматитом , экземой , конъюнктивитом , угнетением дыхательной функции и нервной системы, нарушением работы печени. Передозировка веществом увеличивает риск развития онкозаболеваний.

Источником элемента считаются: растительные и животные продукты, морепродукты, зерно, злаки, табак, вино, и даже питьевая вода.

О попадании в наш рацион данного микроэлемента беспокоиться не стоит – он есть практически во всех продуктах животного и растительного происхождения, его нет разве что в составе рафинированного сахара. С едой он поступает к нам в достаточном количестве. Продукты, особо богатые ним, такие как креветки, омары, лангусты – во избежание передозировки следует есть в умеренных количествах, чтобы не получить вовнутрь чрезмерное количество яда.

В человеческий организм соединения мышьяка могут попасть с минеральной водой, морепродуктами, соками, виноградными винами, медицинскими препаратами, гербицидами и пестицидами. Кумулируется это вещество преимущественно в ретикуло-эндотелиальной системе, а также в лёгких, коже, почках. Недостаточным суточным поступлением вещества в организм считается 1 мкг/день. Порог токсичности составляет примерно 20 мг.

Большое количество элемента содержится в рыбьем жире и, как ни странно, в винах. В нормальной питьевой воде содержание вещество невысокое и не опасное для здоровья – примерно 10 мкг/л. Некоторые регионы мира (Мексика, Тайвань, Индия, Бангладеш ) печально известны тем, что в питьевой воде этих стран содержится повышенное количества мышьяка (1 мг/л ), и поэтому там иногда происходят массовые отравления граждан.

Мышьяк препятствует потери организмом фосфора. Витамин D является регулирующим фактором в протекании фосфорно-кальциевого обмена, а мышьяк, в свою очередь, регулирует фосфорный обмен.

Известно также, что некоторые из форм аллергии развиваются из-за дефицита в организме мышьяка.

Микроэлемент применяется для повышения аппетита при анемии . При отравлении селеном мышьяк является отличным противоядием. Экспериментальные исследования на мышах показали, что точно рассчитанные дозы вещества помогают снизить заболеваемость раком.

При увеличении концентрации элемента в почве или продуктах питания, наступает интоксикация . Выраженная интоксикация может привести к таким серьёзным болезням как рак гортани или белокровие. Более того, число летальных исходов тоже увеличится.

Известно, что 80% вещества, поступившего в организм с пищей, направляется в желудочно-кишечный тракт и оттуда попадает в кровь, а оставшиеся 20% попадают к нам через кожу и лёгкие.

Через сутки после поступления в организм, из него выводится более 30% вещества вместе с мочой и около 4% – вместе с фекалиями. По классификации, мышьяк относят к иммунотоксичным, условно эссенциальным, элементам. Доказано, что вещество принимает участие практически во всех важных биохимических процессах.

Мышьяк в стоматологии

Это вещество нередко применяют для лечения такого стоматологического заболевания как кариес . Кариес начинается с того, что известковые соли зубной эмали начинают разрушаться, и ослабевший зуб атакуют болезнетворные микроорганизмы. Поражая мягкую внутреннюю часть зуба, микробы образуют кариозную полость.
Если на данном этапе заболевания вычистить кариозную полость и заполнить пломбировочным материалом, то зуб останется «живым». А если пустить процесс на самотёк, то кариозная полость доходит до ткани, которая содержит кровеносные, нервные и лимфатические сосуды. Она называется пульпа.

Развивается воспаление пульпы, после чего единственным средством предотвращения дальнейшего распространения заболевания станет удаление нерва. Вот для проведения этой манипуляции мышьяк и нужен.

Стоматологическим инструментом обнажается пульпа, на неё кладут крупинку пасты, содержащей мышьяковистую кислоту, и она практическим мгновенно диффундирует в пульпу. Спустя сутки зуб мертвеет. Теперь пульпу можно удалить совершенно безболезненно, и заполнить корневые каналы и пульповую камеру специальной антисептической пастой, и запломбировать зуб.

Мышьяк в лечении лейкоза

Мышьяк довольно успешно применяется для лечения легкой формы лейкоза , а также в период первичного обострения, при котором еще не наблюдается резкое увеличение селезёнки и лимфоузлов. Он снижает или даже подавляет патологическое образование лейкоцитов , стимулирует красное кроветворение и выделение эритроцитов на периферию.

Получение мышьяка

Его получают в качестве побочного продукта переработки свинцовых, медных, кобальтовых и цинковых руд, а также при добывании золота. Некоторые из полиметаллических руд содержат в себе до 12% мышьяка. Если их нагреть до 650 – 700 градусов, то при отсутствии воздуха происходит возгонка. Если нагреть на воздухе, то образуется «белый мышьяк», являющийся летучим оксидом. Его подвергают конденсации и нагревают с углём, при этой реакции происходит восстановление мышьяка. Получение этого элемента является вредным производством.

Раньше, до развития экологии как науки, «белый мышьяк» в больших количествах выпускали в атмосферу, и впоследствии он оседал на деревья и растениях. Допустимая концентрация в воздухе составляет 0,003 мг/м3, в то время как возле промышленных объектов концентрация доходит до 200 мг/м3. Как ни странно, но окружающую среду сильнее загрязняют не те заводы, которые производят мышьяк, а электростанции и предприятия цветной металлургии. Донные осадки вблизи медеплавильных заводов содержат в себе большое количество элемента – до 10 г/кг.

Другой парадокс состоит в том, что это вещество добывается в большем количестве, чем оно требуется. Это редкое явление в области добывания металлов. Излишки его приходится утилизировать в больших металлических контейнерах, пряча их в отработанных старых шахтах.

Ценным промышленным минералом является арсенопирит. Большие медно-мышьяковые залежи встречаются в Средней Азии, Грузии, США, Японии, Норвегии, Швеции; золотомышьяковые – в США, Франции; мышьяково-кобальтовые – в Новой Зеландии, Канаде; мышьяково-оловянные – в Англии и Боливии.

Определение мышьяка

Качественная реакция на мышьяк состоит в осаждении жёлтых сульфидов из солянокислых растворов. Следы определяют методом Гутцейта или реакцией Марша: бумажные полоски, пропитанные HgCl2, меняют цвет на тёмный в присутствии арсина, восстанавливающего сулему до ртути.

В последние полвека были разработаны разнообразные чувствительные методики анализа (спектрометрия ), благодаря которым можно выявить даже малое количество мышьяка. Если же вещества в воде совсем немного, то предварительно выполняют концентрирование образцов.

Некоторые соединения анализируют селективным гидридным методом. Этот метод заключается в проведении селективного восстановления анализируемого вещества в летучее вещество арсин. Летучие арсины вымораживают в ёмкости, охлаждённой жидким азотом. Затем, медленно подогревая содержимое ёмкости, можно добиться того, что разные арсины испаряются раздельно друг от друга.

Промышленное применение

Около 98% всего добываемого мышьяка не используется в чистом виде. А вот его соединения получили популярность и применяются в разных отраслях промышленности. Ежегодно добывают и используют сотни тонн вещества. Его добавляют в состав подшипниковых сплавов для улучшения качества, используют при создании кабелей и свинцовых аккумуляторов для повышения твёрдости, применяют в сплавах с германием или кремнием при производстве полупроводниковых приборов. Мышьяк применяется как легирующая добавка, которая придает проводимость определенного типа «классическим» полупроводникам.

Мышьяк является ценным материалом в цветной металлургии. При добавлении к свинцу в количестве 1%, повышается твёрдость сплава. Если в расплавлённый свинец добавить немного мышьяка, то в процессе отливки дроби выходят шарики сферической правильной формы. Добавка в медь усиливает её прочность, коррозионную стойкость и твёрдость. Благодаря этой добавке, текучесть меди увеличивается, что облегчает процесс волочения проволоки.

Добавляют As в некоторые сорта латуней, бронз, типографских сплавов, баббитов. Но всё же металлурги стараются исключить из производственного процесса эту добавку, поскольку она очень вредна для человека. Более того, она вредна и для металлов, поскольку присутствие мышьяка в больших количествах ухудшает свойства многих сплавов и металлов.

Оксиды используют в стекловарении как осветлители стекла. Еще древние стеклодувы знали, что белый мышьяк способствует непрозрачности стекла. Однако малые добавки его, наоборот, осветляют стекло. Мышьяк и поныне входит в рецептуру изготовления некоторых стекол, к примеру, «венского» стекла, используемого для создания термометров.

Мышьяковистые соединения используют в качестве антисептического средства для предохранения от порчи, а также для консервирования мехов, шкур, чучел; для создания необрастающих красок для водного транспорта; для пропитки древесины.

Биологическая активность некоторых производных As заинтересовала агрономов, работников санэпидслужбы, ветеринаров. В итоге были созданы мышьяксодержащие препараты, которые являлись стимуляторами продуктивности и роста; лекарственные средства для профилактики болезней скота; противоглистные средства.

Землевладельцы в древнем Китае обрабатывали оксидом мышьяка посевы риса , чтобы сберечь их от грибковых заболеваний и крыс, и таким образом обезопасить урожай. Сейчас же, из-за ядовитости мышьяксодержащих веществ, их применение в сельском хозяйстве ограничено.

Важнейшие области использования мышьяксодержащих веществ – производство микросхем, полупроводниковых материалов и волоконной оптики, плёночной электроники, а также выращивание для лазеров специальных монокристаллов. В этих случаях, как правило, применяют газообразный арсин. Арсениды индия и галлия применяют при изготовлении диодов, транзисторов, лазеров.

В тканях и органах элемент в основном обнаруживается в белковой фракции, гораздо меньше его – в кислоторастворимой фракции и только незначительная его часть находится в липидной фракции. Он является участником окислительно-восстановительных реакций, без него невозможен окислительный распад сложных углеводов. Он участвует в брожении и гликолизе. Соединения этого вещества применяются в биохимии как специфические ферментные ингибиторы, которые нужны для изучения метаболических реакций. Он необходим человеческому организму в качестве микроэлемента.

МЫШЬЯК (Arsenicum, As ) - химический элемент V группы периодической системы Д. И. Менделеева, соединения к-рого в медицине используются в качестве лекарственных средств; радиоизотопы мышьяка применяют для изучения его обмена в организме и для диагностики опухолей головного мозга (однако в этой области мышьяк вытесняется более совершенными радиофармацев-тическими препаратами технеция-99м и др.). М. относят к микроэлементам (см.). При добыче мышьяковых руд и работе с веществами, содержащими М., необходима особая осторожность, т. к. М. и особенно его соединения представляют собой значительную профвредность. Соединения М. могут служить причиной острых и хрон, отравлений населения и персонала, имеющего с ними контакт. М. является также одним из наиболее сильных канцерогенов и тератогенов. Соли М. и другие его хим. соединения очень ядовиты, их применяют в качестве инсектицидов и гербицидов. Соединения М., попадая в организм, обладают способностью кумулироваться (в частности, в волосах и ногтях).

Содержание М. в земной коре составляет 0,0005 вес. %. В природе в чистом виде М. встречается редко; он распространен преимущественно в виде соединений с серой - сульфидов М. и сульфоарсенидов, реже в виде арсенатов (соли к-т 5-валентного М.) и арсенидов (соединения М. с металлами). Соли мышьяковистой к-ты, где М. трехвалентен, называются арсенитами. Известно св. 120 минералов, содержащих М., из к-рых наиболее распространены мышьяковый колчедан, мышьяковистый колчедан, реильгар (As 4 S 4). В рудах М. чаще всего встречаются в комплексе с благородными и цветными металлами и серой. При сплавлении со щелочами М. образует очень ядовитый мышьяковистый водород - бесцветный газ без запаха (в чистом состоянии). Весьма ядовиты также все ар-сенаты и арсениты, к-рые используются в качестве инсектицидов.

Содержание М. в незагрязненных пищевых продуктах низкое - в среднем сотые доли миллиграмма на 1 кг веса (массы); содержание М. в суточном пищевом рационе человека, как правило, не превышает 1 мг. Вода незагрязненных соединениями М. поверхностных водоемов содержит в 1 л несколько микрограммов (тысячных долей миллиграмма) М., однако концентрация его в воде нек-рых минеральных источников достигает нескольких десятков миллиграммов на 1 л (см. Мышьяковистые воды). Допустимая концентрация М. в питьевой воде по ГОСТ 2874-73 составляет 0,05 мг/л.

Атомный номер М. 33, атомный вес (масса) 74,9216; атомный радиус 1,48 А, относительная плотность 5,72 г/см 3 (при 20°). Валентность М. в соединениях +3, + 5, -3, реже +2. М. состоит из одного стабильного изотопа с массовым числом 75. Искусственно получены 14 радиоизотопов М. с массовыми числами от 68 до 85, два из к-рых имеют также изомеры (см. Изомерия).

Большинство радиоактивных изотопов М.- короткоживущие и ультракороткожив ущие, с периодами полураспада от секунд до десятков часов. В медицине в небольшом объеме применяются два радиоизотопа - с массовыми числами 74 (период полураспада 17,9 дня) и 76 (период полураспада - 26,4 часа). Потенциально подходящим для клин, исследований является также 72As, имеющий период полураспада 26 час.

76 As получают облучением природных соединений М. тепловыми нейтронами в ядерном реакторе, a 74As - на ускорителе заряженных частиц, чаще всего облучая германиевую мишень дейтронами на циклотроне, по реакции 73 Ge (d, n)- 74 As. Однако в этом случае по попутным реакциям образуются и другие радиоизотопы М. 72As можно получать с помощью изотопного генератора на основе материнского 72Se (период полураспада 8,4 дня), по реакции 70Ge (d, 2п) 72 Se->72As. 76As распадается с испусканием многокомпонентного спектра (3-излучения, основные составляющие к-рого имеют максимальные энергии Ер, равные 2,97 (54%); 2,41 (29%); 1,85(4%) и 1,76 МэВ (8%). Распад сопровождается V-излучением, охватывающим энергии от 0,510 до 2,656 МэВ. 74As распадается с помощью электронного захвата (39%), пози-тронного излучения (29%) с энергией Ез+ = = 1,54 (3,5%)и 0,91 МэВ (26%) и (3-излучения (32%) с энергией Ер = 1,35 (18%) и 0,72 МэВ (14%)- Распад также сопровождается 7-излучением в широком диапазоне энергий. 72As распадается путем электронного захвата и многокомпонентного позитрон-ного излучения, одновременно испуская широкий спектр v-излучения.

М. имеет не менее трех основных аллотропических модификаций, из к-рых две кристаллические и одна аморфная. М. в наиболее устойчивой при обычных условиях форме представляет собой хрупкий серый металл; при атмосферном давлении возгоняется, не плавясь, при 615°. При конденсации паров М. образуется желтый М.- прозрачные кристаллы* по консистенции напоминающие воск, с плотностью 1,97 г/см 3 , при действии света или при нагревании желтый М. переходит в серый М. Существуют также стекловидно-аморфные модификации: черный М. и бурый М., к-рые превращаются в серый М. при нагревании до температуры выше 270°. Из арсенатов и арсенитов растворимы в воде только соли щелочных металлов и аммония. Азотной к-той и царской водкой М. окисляется в мышьяковую к-ту H 3 AsO 4 . Эта к-та применяется как исходный продукт для получения используемых в медицине органических соединений М. С кислородом М. образует мышьяковистый ангидрид As 2 O 3 и мышьяковый ангидрид As 2 O 5 . При окислении As 2 O 3 азотной к-той может быть также получена мышьяковая к-та H 3 AsO 4 .

В промышленности М. получают нагреванием минерала - мышьякового колчедана или (реже) восстановлением As 2 O 3 с помощью угля. Для добычи М. используются и нек-рые другие минералы.

Наиболее распространенный и доступный метод выделения М. из субстратов биол, происхождения - это минерализация (см.) при помощи серной и азотной к-т. Качественно в минерализате М. может быть обнаружен методом, основанным на способности соединений М. восстанавливаться водородом до мышьяковистого водорода, к-рый обнаруживается затем качественными реакциями, напр, реакцией образования так наз. мышьякового зеркала, заключающейся в оседании на поверхности стекла металлического М. (так наз. проба Марша). Для количественного определения М. чаще всего применяют колориметрические методы: с диэтилдитиокарбаматом серебра в пиридине (чувствительность метода 0,04 мг As на пробу) и с использованием молибденовокислого аммония с серной к-той и электролитной медью для определения AsH3 (чувствительность метода - 0,002 мг AsH3 на пробу). Классическим методом количественного определения М. в чистом р-ре его солей является йодометрический метод, однако для практических целей он применяется редко.

Среднее содержание М. в теле человека - 0,08-0,2 мг/кг. В крови М. концентрируется в эритроцитах, где связывается с гемоглобином. Наибольшее его количество обнаружено в почках и печени. В тканях М. содержится в основном в белковой фракции. Он участвует в окислительно-восстановительных реакциях. Существует представление, согласно к-рому М. выполняет в организме какие-то функции, возможно и полезные, однако прямых доказательств этого нет.

М. постепенно выводится из организма, однако, поскольку период его полувыведения достаточно велик (280 дней), при постоянном поступлении М. в организме происходит его кумуляция.

Профессиональные вредности

Поступление в организм человека соединений М. может происходить в производственных условиях, а также вне производства с воздухом (за счет промышленных выбросов), с водой (за счет загрязнения ее промышленными стоками), а также с природными подземными водами (за счет контакта с богатыми М. породами), с пищевыми продуктами, загрязненными М.

В окружающей человека среде из всех соединений М. больше всего содержится его солей - арсенитов натрия и кальция, а также арсената кальция, применяемых в качестве инсектицидов. Эти соединения могут загрязнять почву и с.-х. продукты, смываться с почвы талыми и дождевыми водами в поверхностные водоемы, проникать в грунтовые воды. Большое количество соединений М. может выбрасываться в атмосферу и поступать со сточными водами в водоемы в р-не расположения промышленных предприятий цветной металлургии, перерабатывающих железную, медную, свинцовую, цинковую руду, содержащую примеси мышьяка, а также в р-не предприятий по производству инсектофунгицидов, предприятий золотодобывающей промышленности, крупных электростанций, работающих на углях нек-рых месторождений, и др.

Опасность соединений М. зависит от их способности растворяться в воде и биол, жидкостях. К высокотоксичным и высокоопасным соединениям М. относят мышьяковистый водород (AsH3, арсин), оксиды М.: окись As (III) - мышьяковистый ангидрид, белый мышьяк (As203); окись As (V) - мышьяковый ангидрид (As2O5); хлорид As (III), AsCl3, а также органические соединения М.

Плохо растворимые в воде соединения М., напр, сульфиты и сульфиды М., относительно малотоксичны.

Токсическая доза соединений М. при однократном поступлении находится в пределах 0,01-0,05 г (при повышенной чувствительности к М. 0,001 г), смертельная доза - 0.06 - 0,2 г.

Общий характер отравляющего действия соединений М. на животных и человека заключается в их первоочередном действии на нервную систему и стенки сосудов, результатом чего является увеличение проницаемости сосудистой стенки и паралич капилляров. Механизмы регуляции кровообращения нарушаются, в результате нарушения трофики развиваются некробиотические очаги в печени, сердце, кишечнике, почках, ногтях, на коже отмечаются экзема, гиперкератоз, мышьяковистые бородавки.

Первичный механизм токсического действия соединений М., особенно As (III), объясняют их высоким сродством к SH-группам (тиоловым группам) ферментов и других биологически активных соединений, в т. ч. глутатиона (см.). Необратимо связывая SH-группы, соединения М. ингибируют SH-ферменты, нарушается жировой и углеводный обмен, снижается интенсивность окислительных процессов в тканях. Глубина биохим, нарушений зависит от количества и продолжительности воздействия яда на организм. Кроме того, многие исследователи полагают, что М. является антиметаболитом йода, селена и, возможно, фосфора, конкурентно занимая их места в соответствующих биохим, цепях и блокируя их. Соединения As (III) токсичнее соединений As(V).

При потреблении природных или загрязненных М. вод, содержащих более 0,1 мг/л М., а также в случае несоблюдения гиг. нормативов на производстве может развиться хрон, отравление М. Мышьяк и его соединения в производственных условиях проникают в организм работающих преимущественно через органы дыхания, меньше - через неповрежденную кожу и жел.-киш. тракт.

При выраженном хрон, отравлении соединениями М., попадающими в организм человека различными путями, отмечаются постоянная тошнота, позывы на рвоту, боль в желудке, диспепсия, энтероколит, хрон, гепатит, в тяжелых случаях развивается цирроз печени. Аппетит отсутствует. Наблюдаются раздражение конъюнктивы, слезотечение, светобоязнь, отек век, помутнение стекловидного тела и роговицы, сухость в носоглотке, насморк, иногда изъязвление (вплоть до прободения) носовой перегородки, стоматит, ларингит, трахеит, бронхит. На коже - папулезная и пустулезная сыпь, чаще между пальцами; на мошонке - изъязвления; возникают жжение и краснота в области половых органов. Кроме того, хрон, отравления соединениями М. сопровождаются фурункулезом, рецидивирующей экземой, атрофическим акро-дерматитом, гипергидрозом, особенно ладоней и подошв (один из ранних симптомов интоксикации), пигментацией кожи, напоминающей пигментацию при аддисоновой болезни, атрофией и ломкостью ногтей, выпадением и поседением волос.

Изменения со стороны нервной системы выражаются снижением работоспособности, нарушением мышления, запоминания и речи, головной болью. Возможны депрессия, галлюцинации, раздражительность. Наблюдается полиневрит; в большинстве случаев поражение нервов симметричное, начинающееся дистально, на конечностях (чаще малоберцового и лучевого нервов). При прогрессировании поражения нервной системы - парезы и вялые параличи с последующей атрофией мышц и перерождением мышечной ткани.

Нередко развиваются ретробуль-барный неврит, расстройство вкуса и обоняния.

Часто при хрон, отравлении соединениями М. отмечают дистрофические изменения во внутренних органах особенно в печени, почках и в сердце. В отдельных случаях возможны акроцианоз, облитерирующий эндартериит и узелковый периартериит. Изменения крови могут выражаться в анемии разной степени. Половая активность снижена.

Доказано канцерогенное действие М. При многолетнем приеме препаратов М. внутрь или при работе с его соединениями в течение долгого времени развивается рак кожи. При профессиональном арсеницизме, а также после длительного лечения препаратами М. может развиться множественный рак. Поскольку вопрос о пороговости действия канцерогенов еще окончательно не решен, следует считаться с возможностью того, что поступление в организм любого количества М. связано с риском возникновения рака, так же как воздействие ионизирующей радиации. Экспериментально установлено тератогенное действие М.

Отравление

Острые отравления различными соединениями М. протекают тяжело.

Различают три формы острого отравления М.

При поступлении яда в желудок (напр., при отравлении инсектицидами и т. п.) наиболее вероятна жел.-киш. форма. При этом в течение первых V2-2 час. пострадавшие отмечают металлический вкус, ощущение царапанья и жжения во рту. Начинается сильнейшая боль в животе, неукротимая рвота. Рвотные массы чаще всего желто-зеленого цвета, иногда содержат белое «ядро» из нерастворившегося М. Спустя несколько часов рвота оканчивается, но боли в животе не прекращаются. Уже в первый день клин, картина этой формы острого отравления М. напоминает холеру. Наблюдается мучительный понос (испражнения напоминают рисовый отвар), наступает резкое обезвоживание организма, мочеотделение уменьшается, иногда до полной анурии (см.). Голос пострадавшего становится хриплым, нарастают судороги (особенно в икрах), цианоз, коллапс (см.). Смерть может наступить через несколько дней или даже часов.

Вторая форма острого отравления соединениями М.- паралитическая - наблюдается при поступлении в организм различными путями больших количеств яда (от 0,06 г и больше). Характерны общая слабость, болезненные судороги, потеря сознания, коматозное состояние, паралич дыхательного ii сосудодвигательного центров. Смерть может наступить через несколько часов, самое позднее - через сутки, без появления расстройств со стороны жел.-киш. тракта.

Третья форма острого отравления наблюдается при вдыхании пыли соединений М. (напр., при протравливании семян, добыче руды, содержащей М., и т. п.) или мышьяковистого водорода. При воздействии пыли М. сначала поражаются конъюнктива и слизистые оболочки дыхательных путей, иногда появляется кровохарканье. Если не принять надлежащих мер, все симптомы усиливаются, возникает сильная головная боль, иногда носовое кровотечение. Отмечают, что ранним симптомом этой формы острого отравления соединениями М. является тупая боль в руках и ногах. При утяжелении состояния появляются сладкий вкус во рту, тошнота, рвота, боли в животе, ощущение жара и зуда в области половых органов. Выражено поражение нервной системы - дрожание, судороги. Прогноз при этой форме острого отравления относительно благоприятный, однако последствия одноразового отравления могут сказываться в течение месяца.

Острые отравления мышьяковистым водородом по клин, картине не отличаются от отравлений, вызванных вдыханием других соединений М., что объясняется его гемолитическим действием. Первые симптомы отравления AsH3 - общее недомогание, рвота, желтуха, красный цвет мочи (за счет гемолиза крови), количество мочи уменьшено. В тяжелых случаях в крови резко снижено содержание эритроцитов и гемоглобина. Смертность при острых отравлениях мышьяковистым водородом достигает 30%.

Первая помощь и неотложная терапия. При отравлении соединениями М. по возможности требуется немедленная госпитализация. Неотложная терапия при отравлении AsH3 предполагает за-менное переливание крови с внутривенным вливаниехМ 40% р~ра глюкозы (10-20 мл), борьбу с анемией и почечной недостаточностью; в тяжелых случаях - искусственная почка. При остром отравлении per os проводят неотложные мероприятия, направленные на быстрое удаление М. из организма и его обезвреживание (рвотные средства, промывание желудка теплой водой, взвесью окиси магния - 20 г на 1 л воды). Затем вводят Antidotum arsenici (100 ч. р-ра сульфата железа плотностью 1,43 на 300 частей холодной воды) по 1 чайн. л. через каждые 10-12 мин. до полного прекращения рвоты. Применяют также Antidotum metallorum (в 100 мл воды 0,5-0,7 г сероводорода, 0,1 г едкого натра, 0,38 г сульфата и 1,25 г гидрокарбоната натрия): в желудок вводят 200 мл воды, затем 100 мл антидота, после чего промывают желудок. Назначают внутривенно 20 мл 25-40% р-ра глюкозы с аскорбиновой к-той (500 мг) и витамином Вх (50 мг), капельные клизмы из 5% р-ра глюкозы, физиол, р-р под кожу, камфору, кофеин, кислородную терапию. Следует как можно раньше начинать лечение ди-тиоловыми препаратами, к к-рым относятся липоевая кислота (см.), БАЛ, унитиол (см. Антидоты ОВ).

Для лечения некробиотических очагов на коже рекомендуют внутрь аскорбиновую к-ту, витамин А (100 000 ME в день), тиосульфат натрия (внутривенно), холодные примочки (свинцовые, с буровской жидкостью и др.), цинковые болтушки, гидрокортизоновую мазь, стрепто-цидную и синтомициновую эмульсии и т. п. При воспалении конъюнктивы или роговицы - местно 5% р-р БАЛ или 5% р-р унитиола, при блефарите - мазь, содержащую эти вещества.

Меры предупреждения отравлений, индивидуальная защита

В производствах, где возможен контакт с мышьяковистым водородом, рекомендуется герметизация оборудования, автоматизация процессов, рациональная планировка производственных помещений, эффективная вентиляция. При работе с пылевидными соединениями М. следует надевать респираторы типа «Лепесток» и др., защитные очки, противопылевую спецодежду и нательное белье, перчатки. Необходимы строгая личная гигиена, теплый душ без применения мыла после окончания работы, последующая обработка загрязненных или пораженных участков кожи спиртом. Производят дегазацию спецодежды (замачивание в 1% р-ре сульфата меди, 2% р-ре двууглекислого натрия или сульфата аммония, последующее тщательное прополаскивание или стирка под тягой). При возможности в технологическом процессе соединения М. заменяют другими, менее токсичными.

Обязательны осмотры рабочих перед приемом на работу на предприятия, где имеется контакт с М. и его соединениями, и периодические медосмотры работающих на этих предприятиях терапевтом - 1 раз в год, оториноларингологом - 1 раз в 3 мес., дерматологом - 1 раз в 6 мес. Рекомендуется определение М. в моче, количество к-рого в ней, по данным Планкетта (Е. P. Plunkett), не должно превышать 0,5-1 мг/л, а также в волосах и ногтях.

Работающим в производстве мышьяксодержащих солей, на добыче и переработке мышьяковых руд и т. п. полагается леч.-проф, питание (см. Питание лечебное), ежедневный прием 150 мг аскорбиновой к-ты, молоко (установлено, что молоко повышает выделение М. из организма и способствует лучшей его переносимости). Рацион работающих с М. должен быть обогащен белками, метионином и холином.

Предельно допустимая концентрация мышьякового и мышьяковистого ангидридов в воздухе - 0,1 мг/м 3 , арсената свинца - 0,15 мг/м 3 , мышьяковистого водорода - 0,1 мг/м 3 . При работе с радиоизотопами М. необходимо учитывать, что они относятся к радиоизотопам средней токсичности.

Минимально значимая активность на рабочем месте, пе требующая регистрации или получения разрешения органов Государственного сан. надзора, составляет не более 10 мккюри.

Определение в воздухе мышьяксодержащих соединений заключается в минерализации пробы сильными к-тами, окислении находящегося в пробе М. до мышьяковой к-ты, переводе ее в мышьяково-молибденовый комплекс и определении интенсивности его окраски колориметрированием. Соединения As (III) окисляют до As (V) и определяют таким же методом, чу ветви-тельность к-рого равна 0,5 мг As в анализируемом объеме. Используют также цветную реакцию М. с диэтил дитиокарбаматом серебра.

Патологическая анатомия отравлений мышьяком и мышьяк в судебно-медицинском отношении

Патологоанатомическая картина острых отравлений М. зависит от хим. свойств соединений М. и путей проникновения яда в организм (пероральный, ингаляционный, чрескожный).

При отравлениях арсенитами и ар-сенатами пероральный путем в течение первых часов отмечаются отек и полнокровие слизистой оболочки рта, глотки, пищевода, желудка и кишечника, очаговые кровоизлияния, поверхностные некрозы слизистой оболочки кишок, иногда их изъязвление, набухание и увеличение лимф, фолликулов (пейеровых бляшек) и лимф, узлов брыжейки, на слизистых оболочках обнаруживаются частицы яда. В тяжелых случаях патоморфол, картина в кишечнике напоминает изменения при холере.

При отравлениях мышьяковистым водородом ингаляционным путем наблюдается внутрисосудистый гемолиз с желтухой и появлением бронзового оттенка кожи, острый гемо-глобинурийный нефроз, дистрофия печени, гемолитическая анемия. Макроскопически в почках обнаруживается черно-бурая радиальная исчерченность в почечных пирамидках, обусловленная задержкой пигментированных шлаков в просвете дистальных отделов почечных канальцев (цветн. рис. 1). Гистологически в почках выявляются коагуляционный некроз эпителия почечных канальцев с последующим его отторжением и регенерацией, гемоглобиновые цилиндры в просвете почечных канальцев (цветн. рис. 2). Изменения в печени макроскопически соответствуют картине желтой дистрофии. Гистологически выявляется стеатоз, очаговые или диффузные центролобулярные некрозы. Электронно-микроскопически в почках и печени наиболее ранние повреждения обнаруживаются в эндотелии капилляров, отмечается отек, разрушение крист и деформация митохондрий, расширение эндоплазматического ретикулума, разрыв клеточных мембран, пикноз ядер. Начальные повреждения нефротелия более выражены в апикальных отделах. Они характеризуются разрывом клеточных мембран, десквамацией микроворсинок и некрозом клеток. В гепатоцитах наблюдается почти полное исчезновение гликогена, разрушение крист митохондрий, появление миелиновых телец в расширенных цистернах эндоплазматической сети, увеличение свободных рибосом, разрыв клеточных мембран.

Если смерть в результате острого отравления соединениями М. наступила через несколько дней после попадания М. в организм, то при суд.-мед. исследовании трупа выявляются дистрофические изменения мышц и нервных окончаний, полнокровие мозга. При суд.-мед. исследовании трупа наиболее выраженные изменения отмечаются при жел.-киш. форме отравления.

Суд.-хим. доказательство отравления М. заключается в обнаружении М. в минерализате различных тканей внутренних органов, костей, волос, ногтей и т. д. при помощи широко употребляемых хим. реакций на М.- пробы Марша и реакции с диэтилдитиокарбаматом серебра в пиридине. Т. к. положительную пробу Марша может давать также и сурьма (см.), то для идентификации М. кристаллы вещества, образующие серовато-черное зеркало на поверхности стекла, соскабливают, растворяют в нескольких каплях концентрированной азотной к-ты, р-р jnepe-носят на предметное стекло и добавляют хлорид цезия и йодид калия. М. в отличие от сурьмы образует сложные кристаллы в виде правильных шестилучевых звезд, окрашенных в красный цвет; при действии пиридина они растворяются, а по краям капли образуются желто-зеленые кристаллы пиридинового комплекса йодидов М. и цезия. М. в минерализате определяют в основном колориметрически в виде мышьяково-молибденового комплекса, имеющего синюю окраску. Чувствительность метода ок. 0,5 мг М. в анализируемом объеме. В практике суд.-мед. экспертизы используют также нейтронно-активационный анализ (см. Активационный анализ) для обнаружения и количественного определения в организме М. по образованию его изотопа 76As в результате облучения нейтронами соответствующих образцов содержащих М. тканей.

Препараты мышьяка

Леч. свойства соединений М. были известны еще в Древней Греции и Древнем Риме. В начале 20 в. препараты М. ввел в мед. практику в качестве лекарственных средств П. Эрлих. С леч. целью использовали как неорганические, так и органические соединения М. К неорганическим препаратам М. относят соединения As(III) - мышьяковистый ангидрид (Acidum arsenicosum anhydricum), р-р калия арсенита (Liquor Kalii arsenitis) и соединения As(V), в основном это натрия арсенат (Natrii arsenas). К органическим соединениям М., использовавшимся в качестве лекарственных средств, относят соединения As(III)-новарсенол (см.), миарсенол (см.) и соединение As(V)- осарсол (см.).

Однако ввиду высокой токсичности применение препаратов М. все более ограничивается. Из всех препаратов М. чаще всего используется мышьяковистый ангидрид, к-рый применяется местно в стоматологической практике для некротизации пульпы. Р-р калия арсенита (внутрь) и 1% р-р натрия арсената для инъекций, к-рый в сочетании со стрихнином входит также в препарат «Дуплекс», иногда применяют при легких формах анемии и для общеукрепляющей терапии.

Для лечения сифилиса ранее широко применялись новарсенол, миарсенол и осарсол в комплексе с другими противосифилитическими средствами. Однако они вытеснены антибиотиками, обладающими более высокой активностью и меньшей токсичностью.

Противопоказаний к применению препаратов М. много: индивидуальная непереносимость, острые инф. болезни (грипп, ангина и др.), язвенные процессы в жел.-киш. трак-те, болезни сердца и сосудов, гепатиты, заболевания почек, щитовидной железы, надпочечников, диабет, геморрагические диатезы, тяжелые формы анемии, туберкулез, заболевания ц. н. с., эпилепсия, болезни зрительного аппарата, хрон, интоксикации алкоголем, ртутью и свинцом.

Обладая достаточно высокой токсичностью, препараты М. даже в терапевтических дозах нередко вызывают тяжелые побочные реакции. Побочное действие препаратов М. проявляется прежде всего в отношении быстро пролиферирующих тканей (слизистая оболочка жел.-киш. тракта, костный мозг) и высокоспециализированных клеток (нейроны, клетки почечных канальцев). У больных после внутривенного и внутримышечного введения препаратов М. могут развиться явления острого отравления: коллапс, головная боль, тошнота, рвота. При неоднократном приеме препаратов М. могут появиться признаки хрон, отравления М.

Библиография: Вредные вещества в промышленности, под ред. Н- В. Лазарева и И. Д. Гадаскиной, т. 3, с. 214, Л., 1977; Г л и н-к а Н. Л. Общая химия, с. 424, М., 1978: И з р а e л ь Б. Е. и П о ж а р и с к и й Ф. И. Мышьяковистый водород, М., 1947; Крылова А.Н. Исследование биологического материала на «металлические» яды дробным методом, с. 66, М., 1975; Левин В. И. Получение радиоактивных изотопов, М., 1972; М а ш к о в с к и й М. Д. Лекарственные средства, т. 2, с. 87, 301, М., 1977; Многотомное руководство по патологической анатомии, под ред. А. И. Струкова, т. 8, кн. 1, с. 185, М.. 1962; Неницеску К. Д. Общая химия, пер. с румын., с. 442, М., 1968; Неотложная помощь при острых отравлениях, под ред. С. Н. Голикова, с. 121 и др., М., 1977; Нормы радиационной безопасности (НРБ-76), М., 1978; Профессиональные болезни, под ред. А. А. Летавета, с. 208, М., 1973; С e р e б р о в А. И. и Д а н e ц-к а я О. Л. Профессиональные новообразования, Л., 1976; Судебная медицина, под ред. В. М. Смольянинова, с. 242, М., 1975; X e в e ш и Г. Радиоактивные индикаторы, пер. с англ., М., 1950; Шва й-к о в а М. Д. Токсикологическая химия, с. 325, М., 1975; F г ё j a v i 1 1 e J. P. e. a. Intoxication aigue par les derives arsenicaux, Ann. Med. interne, t. 123, p. 713, 1972; H i n e C. H., P i n t o S. S. a. N e 1 s o n K. W. Medical problems associated with arsenic exposure, J. occup. Med., v. 19, p. 391, 1977; L e d e r e г С. M., H o 1 1 a n-d e r J. M. a. Perlman I. Table of isotopes, N. Y., 1967; Le Quesne P. M, a. McLeod J. G. Peripheral neuropathy following a single exposure to arsenic, J. neurol. Sci., v. 32, p. 437, 1977; M a p p e s R. Versuche zur Ausscheidung von Arsen in Urin, Int.Arch, occup. environm. Hlth, v. 40, p. 267, 1977; The pharmacological basis of therapeutics, ed. by L. S. Goodman a. A. Gilman, p. 943, N. Y. a. o., 1975.

В. А. Книжников; В. В. Бочкарев (рад), Л. Н. Зимина (пат. ан.), E. Н. Марченко (гиг.), А. Ф. Рубцов (суд.), Л. А. Серебряков (фарм.).

Входящее в состав некоторых минера лов

Мышьяк в Энциклопедическом словаре:
Мышьяк - (лат. Arsenicum) - As, химический элемент V группы периодическойсистемы, атомный номер 33, атомная масса 74,9216. Русское название от""мышь"" (препараты мышьяка применялись для истребления мышей и крыс).Образует несколько модификаций. Обычный мышьяк (т. н. металлический, илисерый) - хрупкие кристаллы с серебристым блеском; плотность 5,74 г/см3,при 615 .С возгоняется. На воздухе окисляется и тускнеет. Добывают изсульфидных руд (минералы арсенопирит, аурипигмент, реальгар). Компонентсплавов с медью, свинцом, оловом и др. и полупроводниковых материалов.Соединения мышьяка физиологически активны и ядовиты; служили одними изпервых инсектицидов (см., напр., Арсенаты металлов). Неорганическиесоединения мышьяка применяются в медицине как общеукрепляющие,тонизирующие средства, органические - как противомикробные ипротивопротозойные (при лечении сифилиса, амебиаза и др.).

Значение слова Мышьяк по словарю медицинских терминов:
мышьяк (Arsenicum; As) - химический элемент V группы периодической системы Д. И. Менделеева, атомный номер 33, атомная масса 74,9216; соединения М. ядовиты; некоторые из них применяются в качестве лекарственных средств, сельскохозяйственных. ядохимикатов.

Значение слова Мышьяк по словарю Ушакова:
МЫШЬЯК , мышьяка, мн. нет, м. 1. Химический элемент, твердое вещество, в больших дозах ядовитое, обычно входящее в состав разных минералов, употр. для химических, технических и медицинских целей. 2. Препарат этого вещества, прописываемый при расстройстве общего питания и нервной системы (мед., апт.). Впрыскивать мышьяк.

Определение слова «Мышьяк» по БСЭ:
Мышьяк (лат. Arsenicum)
As, химический элемент V группы периодической системы Менделеева, атомный номер 33, атомная масса 74,9216; кристаллы серо-стального цвета. Элемент состоит из одного устойчивого изотопа 75 As.
Историческая справка. Природные соединения М. с серой (аурипигмент As 2 S 3 , реальгар As 4 S 4) были известны народам древнего мира, которые применяли эти минералы как лекарства и краски. Был известен и продукт обжигания сульфидов М. - оксид М. (III) As 2 O 3
(«белый М.»). Название arsenikуn встречается уже у Аристотеля; оно произведено от греч. бrsen - сильный, мужественный и служило для обозначения соединений М. (по их сильному действию на организм). Русское название, как полагают, произошло от
«мышь» (по применению препаратов М. для истребления мышей и крыс). Получение М. в свободном состоянии приписывают Альберту Великому (около 1250). В 1789 А. Лавуазье включил М. в список химических элементов.
Распространение в природе. Среднее содержание М. в земной коре (кларк) 1,7·10 −4 % (по массе), в таких количествах он присутствует в большинстве изверженных пород. Поскольку соединения М. летучи при высоких температурах, элемент не накапливается при магматических процессах; он концентрируется, осаждаясь из горячих глубинных вод (вместе с S, Se, Sb, Fe, Co, Ni, Cu и др. элементами). При извержении вулканов М. в виде своих летучих соединений попадает в атмосферу. Так как М. многовалентен, на его миграцию оказывает большое влияние окислительно-восстановительная среда. В окислительных условиях земной поверхности образуются арсенаты (As 5+) и арсениты (As 3+). Это редкие минералы, встречающиеся только на участках месторождений М. Ещё реже встречается самородный М. и минералы As 2+ . Из многочисленных минералов М. (около 180) основное промышленное значение имеет лишь арсенопирит FeAsS (см. Мышьяковые руды).
Малые количества М. необходимы для жизни. Однако в районах месторождении М. и деятельности молодых вулканов почвы местами содержат до 1% М., с чем связаны болезни скота, гибель растительности. Накопление М. особенно характерно для ландшафтов степей и пустынь, в почвах которых М. малоподвижен. Во влажном климате М. легко вымывается из почв.
В живом веществе в среднем 3·10 −5 % М., в реках 3·10 −7 %. М., приносимый реками в океан, сравнительно быстро осаждается. В морской воде лишь 1·10 −7 % М., но зато в глинах и сланцах 6,6·10 −4 %. Осадочные железные руды, железомарганцевые конкреции часто обогащены М.
Физические и химические свойства. М. имеет несколько аллотропических модификаций. При обычных условиях наиболее устойчив так называемый металлический, или серый, М. (α-As) - серо-стальная хрупкая кристаллическая масса; в свежем изломе имеет металлический блеск, на воздухе быстро тускнеет, т. к. покрывается тонкой плёнкой As 2 O 3 . Кристаллическая решётка серого М. ромбоэдрическая (а = 4,123 Е, угол α = 54°10, x = 0,226),
слоистая. Плотность 5,72 г/смі (при 20°C), удельное электрическое сопротивление 35·10 −8 ом·м, или 35·10 −6 ом·см, температурный коэффициент электросопротивления 3,9·10 −3 (0°-100°C), твёрдость по Бринеллю 1470 Мн/мІ, или 147 кгс/ммІ (3-4 по Моосу); М. диамагнитен.
Под атмосферным давлением М. возгоняется при 615°C не плавясь, т. к. тройная точка (см. Диаграмма состояния) α-As лежит при 816°C и давлении 36 ат.
Пар М. состоит до 800°C из молекул As 4 , выше 1700°C - только из As 2 . При конденсации пара М. на поверхности, охлаждаемой жидким воздухом, образуется жёлтый М. - прозрачные, мягкие как воск кристаллы, плотностью 1,97 г/смі, похожие по свойствам на белый Фосфор. При действии света или при слабом нагревании он переходит в серый М. Известны стекловидно-аморфные модификации: чёрный М. и бурый М., которые при нагревании выше 270°C превращаются в серый М.
Конфигурация внешних электронов атома М. 3d 10 4sІ4pі. В соединениях М. имеет степени окисления + 5, + 3 и - 3. Серый М. значительно менее активен химически, чем фосфор. При нагревании на воздухе выше 400°C М. горит, образуя As 2 O 3 . С галогенами М. соединяется непосредственно; при обычных условиях AsF 5 - газ; AsF 3 , AsCl 3 , AsBr 3 - бесцветные легко летучие жидкости; AsI 3 и As 2 l 4 - красные кристаллы. При нагревании М. с серой получены сульфиды: оранжево-красный As 4 S 4 и лимонно-жёлтый As 2 S 3 . Бледно-жёлтый сульфид As 2 S 5 осаждается при пропускании H 2 S в охлаждаемый льдом раствор мышьяковой кислоты (или её солей) в дымящей соляной кислоте: 2H 3 AsO 4 + 5H 2 S = As 2 S 5 + 8H 2 O; около 500°C он разлагается на As 2 S 3 и серу.
Все сульфиды М. нерастворимы в воде и разбавленных кислотах. Сильные окислители (смеси HNO 3 + HCl, HCl + KClO 3) переводят их в смесь H 3 AsO 4 и H 2 SO 4 . Сульфид As 2 S 3 легко растворяется в сульфидах и полисульфидах аммония и щелочных металлов, образуя соли кислот - тиомышьяковистой H 3 AsS 3 и тиомышьяковой H 3 AsS 4 . С кислородом М. даёт окислы: оксид М. (III) As 2 O 3 - мышьяковистый ангидрид и оксид М. (V) As 2 O 5 - мышьяковый ангидрид.
Первый из них образуется при действии кислорода на М. или его сульфиды, например 2As 2 S 3 + 9O 2 = 2As 2 O 3 + 6SO 2 . Пары As 2 O 3 конденсируются в бесцветную стекловидную массу, которая с течением времени становится непрозрачной вследствие образования мелких кристаллов кубической сингонии, плотность 3,865 г/смі. Плотность пара отвечает формуле As 4 O 6: выше 1800°C пар состоит из As 2 O 3 . В 100 г воды растворяется 2,1 г As 2 O 3 (при 25°C). Оксид М. (III) - соединение амфотерное, с преобладанием кислотных свойств. Известны соли (арсениты), отвечающие кислотам ортомышьяковистой H 3 AsO 3 и метамышьяковистой HAsO 2 ; сами же кислоты не получены. В воде растворимы только арсениты щелочных металлов и аммония. As 2 O 3 и арсениты обычно бывают восстановителями (например, As 2 O 3 + 2I 2 + 5H 2 O = 4HI + 2H 3 AsO 4), но могут быть и окислителями (например, As 2 O 3 + 3C = 2As + 3CO).
Оксид М. (V) получают нагреванием мышьяковой кислоты H 3 AsO 4 (около 200°C). Он бесцветен, около 500°C разлагается на As 2 O 3 и O 2 . Мышьяковую кислоту получают действием концентрированной HNO 3 на As или As 2 O 3 . Соли мышьяковой кислоты (арсенаты) нерастворимы в воде, за исключением солей щелочных металлов и аммония. Известны соли, отвечающие кислотам ортомышьяковой H 3 AsO 4 , метамышьяковой HAsO 3 , и пиромышьяковой H 4 As 2 O 7 ; последние две кислоты в свободном состоянии не получены. При сплавлении с металлами М. по большей части образует соединения (Арсениды).
Получение и применение. М. получают в промышленности нагреванием мышьякового колчедана:
FeAsS = FeS + As
или (реже) восстановлением As 2 O 3 углем. Оба процесса ведут в ретортах из огнеупорной глины, соединённых с приёмником для конденсации паров М. Мышьяковистый ангидрид получают окислительным обжигом мышьяковых руд или как побочный продукт обжига полиметаллических руд, почти всегда содержащих М. При окислительном обжиге образуются пары As 2 O 3 , которые конденсируются в уловительных камерах. Сырой As 2 O 3 очищают возгонкой при 500-600°C. Очищенный As 2 O 3 служит для производства М. и его препаратов.
Небольшие добавки М. (0,2-1,0% по массе) вводят в свинец, служащий для производства ружейной дроби (М. повышает поверхностное натяжение расплавленного свинца, благодаря чему дробь получает форму, близкую к сферической; М. несколько увеличивает твёрдость свинца). Как частичный сурьмы М. входит в состав некоторых баббитов и типографских сплавов.
Чистый М. не ядовит, но все его соединения, растворимые в воде или могущие в раствор под действием желудочного сока, чрезвычайно ядовиты; особенно опасен Мышьяковистый водород. Из применяемых на производстве соединений М. наиболее токсичен мышьяковистый ангидрид. Примесь М. содержат почти все сульфидные руды цветных металлов, а также железный (серный) колчедан. Поэтому при их окислительном обжиге, наряду с сернистым ангидридом SO 2 , всегда образуется As 2 O 3 ; большая часть его конденсируется в дымовых каналах, но при отсутствии или малой эффективности очистных сооружений отходящие газы рудообжигательных печей увлекают заметные количества As 2 O 3 . Чистый М., хотя и не ядовит, но при хранении на воздухе всегда покрывается налётом ядовитого As 2 O 3 . При отсутствии должной вентиляции крайне опасно травление металлов (железа, цинка) техническими серной или соляной кислотами, содержащими примесь М., т. к. при этом образуется мышьяковистый водород.
С. А. Погодин.
М. в организме. В качестве микроэлемента М. повсеместно распространён в живой природе. Среднее содержание М. в почвах 4·10 −4 %, в золе растений - 3·10 −5 %. Содержание М. в морских организмах выше, чем в наземных (в рыбах 0,6-4,7 мг в 1 кг сырого вещества, накапливается в печени). Среднее содержание М. в теле человека 0,08-0,2 мг/кг. В крови М. концентрируется в эритроцитах, где он связывается с молекулой гемоглобина (причём в глобиновой фракции содержится его вдвое больше, чем в геме). Наибольшее количество его (на 1 г ткани) обнаруживается в почках и печени. Много М. содержится в лёгких и селезёнке, коже и волосах; сравнительно мало - в спинномозговой жидкости, головном мозге

 

 

Это интересно: