→ Что такое сверхновая звезда. Построение детального описания. Что приводит к сверхновой

Что такое сверхновая звезда. Построение детального описания. Что приводит к сверхновой

сразу после взрыва во многом зависит от удачи. Именно она определяет, удастся ли изучить процессы рождения сверхновой, или же придется гадать о них по следам взрыва - распространяющейся от бывшей звезды планетарной туманности . Число телескопов, построенных человеком, недостаточно велико для постоянного наблюдения всего неба, тем более - во всех областях спектра электромагнитного излучения. Зачастую на помощь ученым приходят астрономы-любители, направляющие свои телескопы куда вздумается, а не на интересные и важные для изучения объекты. Но ведь взрыв сверхновой может произойти где угодно!

Пример помощи от астрономов-любителей представляет сверхновая в спиральной галактике М51 . Известная как галактика Вертушка, она очень популярна среди любителей наблюдения Вселенной. Галактика расположена на расстоянии 25 миллионов световых лет от нас и повернута прямо к нам своей плоскостью, за счет чего ее очень удобно наблюдать. Галактика имеет спутник, который соприкасается с одним из рукавов М51. Свет от звезды, взорвавшейся в галактике, достиг Земли в марте 2011 года и был зарегистрирован астрономами-любителями. Вскоре сверхновая получила официальное обозначение 2011dh и стала центром внимания как профессиональных астрономов, так и любителей. «М51 - одна из ближайших к нам галактик, она чрезвычайно красива и потому широко известна», - говорит сотрудник Калтеха Шилер ван Дайк.

Детально рассмотренная сверхновая 2011dh оказалась принадлежащей к редкому классу взрывов типа IIb. Такие взрывы происходят, когда массивная звезда лишается практически всего своего внешнего облачения, состоящего из топлива-водорода, который, скорее всего, перетягивает ее компаньон по двойной системе . После этого, из-за отсутствия топлива, прекращается термоядерный синтез, излучение звезды не может противостоять гравитации, стремящейся сжать звезду, и она падает к центре. Это один из двух путей взрыва сверхновых, и при таком сценарии (падение звезда на себя под действием гравитации) только каждая десятая звезда рождает взрыв типа IIb.

Существует несколько хорошо обоснованных гипотез относительно общей схемы рождения сверхновой типа IIb, однако восстановление точной цепи событий очень трудно. Поскольку о звезде нельзя сказать, что она очень скоро станет сверхновой, невозможно подготовиться к ее тщательному наблюдению. Конечно, изучение состояния звезды может подсказать, что она скоро станет сверхновой, но это - на масштабах времени Вселенной в миллионы лет, тогда как для наблюдения нужно знать время взрыва с точностью в несколько лет. Лишь изредка астрономам улыбается удача и они имеют детальные снимки звезды до взрыва. В случае галактики М51 имеет место эта ситуация - благодаря популярности галактики существует множество ее снимках, на которых 2011dh еще не взорвалась. «В течение нескольких дней после открытия сверхновой мы обратились к архивам орбитального телескопа Хаббл. Как оказалось, с помощью этого телескопа раньше создавалась подробная мозаика галактики М51 в разных длинах волн», - говорит ван Дайк. В 2005 году, когда телескоп Хаббл сфотографировал область нахождения 2011dh, на ее месте была лишь неприметная желтая гигантская звезда .

Наблюдения за сверхновой 2011dh показали, что она плохо укладывается в стандартное представление о взрыве огромной звезды. Напротив, она более подходит как результат взрыва небольшого светила, например, компаньона желтого сверхгиганта со снимков Хаббла, который лишился практически всей своей атмосферы. Под действием гравитации близкого гиганта от звезды осталось лишь ее ядро, которое и взорвалось. «Мы решили, что предшественником сверхновой была практически полностью раздетая звезда, голубая и невидимая поэтому для Хаббла, - говорит ван Дайк. - Желтый гигант скрывал своим излучением небольшого голубого компаньона, пока он не взорвался. Таков наш вывод».

Другая команда исследователей, занимавшаяся звездой 2011dh, пришла к противоположному, совпадающему с классической теорией, выводу. Именно желтый гигант был предшественником сверхновой по данным Джастина Маунда, сотрудника Королевского университета в Белфасте. Однако в марте этого года сверхновая выдала загадку для обоих коллективов. Первым проблему заметил ван Дайк, решивший собрать дополнительные сведения о 2011dh с помощью телескопа Хаббл. Однако аппарат не нашел на старом месте большой желтой звезды. «Мы лишь хотели еще раз пнаблюдать за эволюцией сверхновой, - говорит ван Дайк. - Мы никак не могли предполагать, что желтая звезда куда-то денется». Другая команда пришла к тем же выводам, используя наземные телескопы: гигант исчез.

Исчезновение желтого гиганта указывает на него как истинного предшественника сверхновой. Публикация ван Дайка разрешает этот спор: «Другая команда была совершенно права, а мы ошиблись». Впрочем, изучение сверхновой 2011dh на этом не заканчивается. По мере спадания яркости 2011dh, галактика М51 вернется к своему состоянию до взрыва (хотя и без одной яркой звезды). К концу этого года яркость сверхновой должна упасть настолько, что станет виден компаньон желтого сверхгиганта - если он был, как предполагает классическая теория рождения сверхновых типа IIb. Несколько групп астрономов уже зарезервировали наблюдательное время телескопа Хаббл для изучения эволюции 2011dh. «Мы должны найти компаньона сверхновой по двойной системе, - говорит ван Дайк. - Если она будет обнаружена, в вопросе происхождения таких взрывов возникнет уверенное понимание».

> Сверхновая звезда

Узнайте, что такое сверхновая звезда : описание взрыва и вспышки звезды, где рождаются сверхновые, эволюция и развитие, роль двойных звезд, фото и исследования.

Сверхновая – это, по сути, звездный взрыв и наиболее сильный, который можно наблюдать в космическом пространстве.

Где появляются сверхновые звезды?

Очень часто сверхновые можно заметить в других галактиках. Но в нашем Млечном Пути это редкое явление для наблюдения, потому что пылевые и газовые дымки перекрывают обзор. Последняя наблюдаемая сверхновая в была замечена Иоганном Кеплером в 1604 году. Телескоп Чандра смог отыскать лишь остатки от звезды, взорвавшейся больше века назад (последствия взрыва сверхновой).

Что приводит к сверхновой?

Сверхновая звезда рождается, когда в центре звезды происходят изменения. Есть два главных типа.

Первый – в двойных системах. Двойные звезды – объекты, связанные общим центром. Одна из них подворовывает вещество у второй и становится чересчур массивной. Но не способна уравновесить внутренние процессы и взрывается в сверхновой.

Второй – в момент смерти. Топливо имеет свойство заканчиваться. В итоге, часть массы начинает поступать в ядро, и оно становится таким тяжелым, что не выдерживает собственной гравитации. Происходит процесс расширения, и звезда взрывается. Солнце – одиночная звезда, но ей не пережить подобного, так как не хватает массы.

Почему исследователи интересуются сверхновыми звездами?

Сам процесс охватывает небольшой временной промежуток, но может очень многое поведать о Вселенной. Например, один из экземпляров подтвердил свойство Вселенной расширяться и то, что темпы увеличиваются.

Также выяснилось, что эти объекты влияют на момент распределения элементов в пространстве. При взрыве звезда выстреливает элементами и космическими обломками. Многие из них даже попадают на нашу планету. Посмотрите видео, в котором раскрываются особенности сверхновых звезд и их взрывов.

Наблюдения вспышек сверхновых

Астрофизик Сергей Блинников об открытии первой сверхновой звезды, остатках после вспышки и современных телескопах

Как их найти сверхновые звезды?

Для процесса поиска сверхновых звезд исследователи используют различные приборы. Некоторые нужны для наблюдения за видимым светом после взрыва. А другие отслеживают рентгеновские и гамма-лучи. Фото получают при помощи телескопов Хаббл и Чандра.

В июне 2012 года начал работать телескоп, фокусирующий свет в области высоких энергий электромагнитного спектра. Речь идет о миссии NuSTAR, которая ищет разрушившиеся звезды, черные дыры и остатки сверхновых. Ученые планируют узнать побольше о том, как они взрываются и создаются.

Измерение расстояний до небесных тел

Астроном Владимир Сурдин о цефеидах, вспышках сверхновых звезд и скорости расширения Вселенной:

Чем вы можете помочь в исследовании сверхновых звезд?

Для того, чтобы внести свою лепту, вам не нужно становиться ученым. В 2008 году сверхновую нашел обычный подросток. В 2011 году это повторила 10-летняя канадская девочка, рассматривавшая снимок ночного неба на своем компьютере. Очень часто снимки любителей вмещают множество интересных объектов. Немного практики и вы можете найти следующую сверхновую! А если говорить точнее, то у вас есть все шансы запечатлеть взрыв сверхновой звезды.

Сверхновые звёзды - одно из самых грандиозных космических явлений. Коротко говоря, сверхновая - это настоящий взрыв звезды, когда большая часть её массы (а иногда и вся) разлетается со скоростью до 10 000 км/с, а остаток сжимается (коллапсирует) в сверхплотную нейтронную звезду или в чёрную дыру. Сверхновые играют важную роль в эволюции звёзд. Они являются финалом жизни звёзд массой более 8-10 солнечных, рождая нейтронные звёзды и чёрные дыры и обогащая межзвёздную среду тяжёлыми химическими элементами. Все элементы тяжелее железа образовались в результате взаимодействия ядер более лёгких элементов и элементарных частиц при взрывах массивных звёзд. Не здесь ли кроется разгадка извечной тяги человечества к звёздам? Ведь в мельчайшей клеточке живой материи есть атомы железа, синтезированные при гибели какой-нибудь массивной звезды. И в этом смысле люди сродни снеговику из сказки Андерсена: он испытывал странную любовь к жаркой печке, потому что каркасом ему послужила кочерга...

По наблюдаемым характеристикам сверхновые принято разделять на две большие группы - сверхновые 1-го и 2-го типа. В спектрах сверхновых 1-го типа нет линий водорода; зависимость их блеска от времени (так называемая кривая блеска) примерно одинакова у всех звёзд, как и светимость в максимуме блеска. Сверхновые 2-го типа, напротив, имеют богатый водородными линиями оптический спектр, формы их кривых блеска весьма разнообразны; блеск в максимуме сильно различается у разных сверхновых.

Учёные заметили, что в эллиптических галактиках (т. е. галактиках без спиральной структуры, с очень низким темпом звездообразования, состоящих в основном из маломассивных красных звёзд) вспыхивают только сверхновые 1-го типа. В спиральных же галактиках, к числу которых принадлежит и наша Галактика - Млечный Путь, встречаются оба типа сверхновых. При этом представители 2-го типа концентрируются к спиральным рукавам, где идёт активный процесс звездообразования и много молодых массивных звезд. Эти особенности наводят на мысль о различной природе двух типов сверхновых.

Сейчас надёжно установлено, что при взрыве любой сверхновой освобождается огромное количество энергии - порядка 10 46 Дж! Основная энергия взрыва уносится не фотонами, а нейтрино - быстрыми частицами с очень малой или вообще нулевой массой покоя. Нейтрино чрезвычайно слабо взаимодействуют с веществом, и для них недра звезды вполне прозрачны.

Законченной теории взрыва сверхновых с формированием компактного остатка и сбросом внешней оболочки пока не создано ввиду крайней сложности учёта всех протекающих при этом физических процессов. Однако все данные говорят о том, что сверхновые 2-го типа вспыхивают в результате коллапса ядер массивных звёзд. На разных этапах жизни звезды в ядре происходили термоядерные реакции, при которых сначала водород превращался в гелий, затем гелий в углерод и так далее до образования элементов «железного пика» - железа, кобальта и никеля. Атомные ядра этих элементов имеют максимальную энергию связи в расчёте на одну частицу. Ясно, что присоединение новых частиц к атомному ядру, например, железа будет требовать значительных затрат энергии, а потому термоядерное горение и «останавливается» на элементах железного пика.

Что же заставляет центральные части звезды терять устойчивость и коллапсировать, как только железное ядро станет достаточно массивным (около 1,5 массы Солнца)? В настоящее время известны два основных фактора, приводящих к потере устойчивости и коллапсу. Во-первых, это «развал» ядер железа на 13 альфа-частиц (ядер гелия) с поглощением фотонов - так называемая фотодиссоциация железа. Во-вторых, нейтронизация вещества - захват электронов протонами с образованием нейтронов. Оба процесса становятся возможными при больших плотностях (свыше 1 т/см 3), устанавливающихся в центре звёзды в конце эволюции, и оба они эффективно снижают «упругость» вещества, которая фактически и противостоит сдавливающему действию сил тяготения. Как следствие, ядро теряет устойчивость и сжимается. При этом в ходе нейтронизации вещества выделяется большое количество нейтрино, уносящих основную энергию, запасённую в коллапсирующем ядре.

В отличие от процесса катастрофического коллапса ядра, теоретически разработанного достаточно детально, сброс оболочки звезды (собственно взрыв) не так-то просто объяснить. Скорее всего, существенную роль в этом процессе играют нейтрино

Как свидетельствуют компьютерные расчёты, плотность вблизи ядра настолько высока, что даже слабо взаимодействующие с веществом нейтрино оказываются на какое-то время «запертыми» внешними слоями звезды. Но гравитационные силы притягивают оболочку к ядру, и складывается ситуация, похожая на ту, которая возникает при попытке налить более плотную жидкость, например воду, поверх менее плотной, скажем керосина или масла. (Из опыта хорошо известно, что лёгкая жидкость стремится «всплыть» из-под тяжёлой - здесь проявляется так называемая неустойчивость Рэлея-Тэйлора.) Этот механизм вызывает гигантские конвективные движения, и когда в конце концов импульс нейтрино передаётся внешней оболочке, она сбрасывается в окружающее пространство.

Возможно, именно нейтринные конвективные движения приводят к нарушению сферической симметрии взрыва сверхновой. Иными словами, появляется направление, вдоль которого преимущественно выбрасывается вещество, и тогда образующийся остаток получает импульс отдачи и начинает двигаться в пространстве по инерции со скоростью до 1000 км/с. Столь большие пространственные скорости отмечены у молодых нейтронных звёзд - радиопульсаров.

Описанная схематическая картина взрыва сверхновой 2-го типа позволяет понять основные наблюдательные особенности этого явления. А теоретические предсказания, основанные на данной модели (особенно касающиеся полной энергии и спектра нейтринной вспышки), оказались в полном согласии с зарегистрированным 23 февраля 1987 г. нейтринным импульсом, пришедшим от сверхновой в Большом Магеллановом Облаке.

Теперь несколько слов о сверхновых 1-го типа. Отсутствие свечения водорода в их спектрах говорит о том, что взрыв происходит в звёздах, лишённых водородной оболочки. Как сейчас полагают, это может быть взрыв белого карлика или результат коллапса звезды типа Вольфа -Райе (фактически это ядра массивных звёзд, богатые гелием, углеродом и кислородом).

Как может взорваться белый карлик? Ведь в этой очень плотной звезде не идут ядерные реакции, а силам гравитации противодействует давление плотного газа, состоящего из электронов и ионов (так называемый вырожденный электронный газ). Причина здесь та же, что и при коллапсе ядер массивных звёзд, - уменьшение упругости вещества звезды при повышении её плотности. Это опять-таки связано с «вдавливанием» электронов в протоны с образованием нейтронов, а также с некоторыми релятивистскими эффектами.

Почему же повышается плотность белого карлика? Это невозможно, если он одиночный. Но если белый карлик входит в состав достаточно тесной двойной системы, то под действием гравитационных сил газ с соседней звезды способен перетекать на белый карлик (так в случае новой звезды). При этом масса и плотность его будут постепенно возрастать, что в конечном счёте приведёт к коллапсу и взрыву.

Другой возможный вариант более экзотичен, но не менее реален – это столкновение двух белых карликов. Как такое может быть, ведь вероятность столкнуться двум белым карликам в пространстве ничтожна, поскольку ничтожно число звёзд в единице объёма – от силы несколько звёзд в 100 пк3. И здесь (в который раз!) «виноваты» двойные звёзды, но теперь уже состоящие из двух белых карликов.

Как следует из общей теории относительности Эйнштейна, любые две массы, обращающиеся по орбите вокруг друг друга, рано или поздно должны столкнуться из-за постоянного, хотя и весьма незначительного, уноса энергии из такой системы волнами тяготения - гравитационными волнами. Например, Земля и Солнце, живи последнее бесконечно долго, столкнулись бы вследствие этого эффекта, правда через колоссальное время, на много порядков превосходящее возраст Вселенной. Подсчитано, что в случае тесных двойных систем с массами звёзд около солнечной (2 10 30 кг) их слияние должно произойти за время меньше возраста Вселенной – примерно за 10 млрд. лет. Как показывают оценки, в типичной галактике такие события случаются раз в несколько сот лет. Гигантской энергии, освобождаемой при этом катастрофическом процессе вполне достаточно для объяснения явления сверхновой.

Кстати, примерное равенство масс белых карликов делает их слияния «похожими» друг на друга, а значит, сверхновые 1-го типа по своим характеристикам должны выглядеть одинаково не зависимо от того, когда и в какой галактике произошла вспышка. Поэтому видимая яркость сверхновых отражает расстояния до галактик, в которых они наблюдаются. Это свойство сверхновых 1-го типа в настоящее время используемся учёными для получения независимой оценки важнейшего космологического параметра - постоянной Хаббла, которая служит количественной мерой скорости расширения Вселенной. Мы рассказали лишь о наиболее мощных взрывах звёзд, происходящих во Вселенной и наблюдаемых в оптическом диапазоне. Поскольку в случае сверхновых звёзд основная энергия взрыва уносится нейтрино, а не светом, исследование неба методами нейтринной астрономии имеет интереснейшие перспективы. Оно позволит в будущем «заглянуть» в самое «пекло» сверхновой, скрытое огромными толщами непрозрачного для света вещества. Ещё более удивительные открытия сулит гравитационно-волновая астрономия, которая в недалёком будущем поведает нам о грандиозных явлениях слияния двойных белых карликов, нейтронных звёзд и чёрных дыр.


Сверхновая звезда или вспышка сверхновой - феномен, в ходе которого звезда резко меняет свою яркость на 4-8 порядков (на десяток звёздных величин) с последующим сравнительно медленным затуханием вспышки . Является результатом катаклизмического процесса, возникающего в конце эволюции некоторых звёзд и сопровождающегося выделением огромной энергии.

Как правило, сверхновые звёзды наблюдаются постфактум, то есть когда событие уже произошло и его излучение достигло Земли. Поэтому природа сверхновых долго была неясна. Но сейчас предлагается довольно много сценариев, приводящих к подобного рода вспышкам, хотя основные положения уже достаточно понятны.

Взрыв сопровождается выбросом значительной массы вещества из внешней оболочки звезды в межзвёздное пространство, а из оставшейся части вещества ядра взорвавшейся звезды, как правило, образуется компактный объект - нейтронная звезда , если масса звезды до взрыва составляла более 8 солнечных масс (M ☉), либо чёрная дыра при массе звезды свыше 20 M ☉ (масса оставшегося после взрыва ядра - свыше 5 M ☉). Вместе они образуют остаток сверхновой.

Комплексное изучение ранее полученных спектров и кривых блеска в сочетании с исследованием остатков и возможных звёзд-предшественников позволяет строить более подробные модели и изучать уже условия, сложившиеся к моменту вспышки.

Помимо всего прочего, выбрасываемое в ходе вспышки вещество в значительной части содержит продукты термоядерного синтеза, происходившего на протяжении всей жизни звезды. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности химически эволюционирует.

Название отражает исторический процесс изучения звёзд, блеск которых значительно меняется со временем, так называемых новых звёзд .

Имя составляется из метки SN , после которой ставят год открытия, с окончанием из одно- или двухбуквенного обозначения. Первые 26 сверхновых текущего года получают однобуквенные обозначения, в окончании имени, из заглавных букв от A до Z . Остальные сверхновые получают двухбуквенные обозначения из строчных букв: aa , ab , и так далее. Неподтверждённые сверхновые обозначают буквами PSN (англ. possible supernova ) с небесными координатами в формате: Jhhmmssss+ddmmsss .

Общая картина

Современная классификация сверхновых
Класс Подкласс Механизм
I
Линии водорода отсутствуют
Сильные линии ионизированного кремния (Si II) на 6150 Ia Термоядерный взрыв
Iax
В максимуме блеска имеют меньшую светимость и меньшую же в сравнении Ia
Линии кремния слабые или отсутствуют Ib
Присутствуют линии гелия (He I).
Гравитационный коллапс
Ic
Линии гелия слабые или отсутствуют
II
Присутствуют линии водорода
II-P/L/N
Спектр постоянен
II-P/L
Нет узких линий
II-P
Кривая блеска имеет плато
II-L
Звёздная величина линейно уменьшается со временем
IIn
Присутствуют узкие линии
IIb
Спектр со временем меняется и становится похожим на спектр Ib.

Кривые блеска

Кривые блеска для I типа в высокой степени сходны: 2-3 суток идёт резкий рост, затем его сменяет значительное падение (на 3 звёздные величины) 25-40 суток с последующим медленным ослаблением, практически линейным в шкале звёздных величин. Абсолютная звёздная величина максимума в среднем для вспышек Ia составляет M B = − 19.5 m {\textstyle M_{B}=-19.5^{m}} , для Ib\c - .

А вот кривые блеска типа II достаточно разнообразны. Для некоторых кривые напоминали оные для I типа, только с более медленным и продолжительным падением блеска до начала линейной стадии. Другие, достигнув пика, держались на нём до 100 суток, а затем блеск резко падал и выходил на линейный «хвост». Абсолютная звёздная величина максимума варьируется в широком пределе от − 20 m {\textstyle -20^{m}} до − 13 m {\textstyle -13^{m}} . Среднее значение для IIp - M B = − 18 m {\textstyle M_{B}=-18^{m}} , для II-L M B = − 17 m {\textstyle M_{B}=-17^{m}} .

Спектры

Вышеприведённая классификация уже содержит некоторые основные черты спектров сверхновых различных типов, остановимся на том, что не вошло. Первая и очень важная особенность, которая долго мешала расшифровке полученных спектров - основные линии очень широкие.

Для спектров сверхновых типа II и Ib\c характерно:

  • Наличие узких абсорбционных деталей вблизи максимума блеска и узкие несмещённые эмиссионные компоненты.
  • Линии , , , наблюдаемые в ультрафиолетовом излучении.

Наблюдения вне оптического диапазона

Частота вспышек

Частота вспышек зависит от числа звёзд в галактике или, что то же самое для обычных галактик, светимости. Общепринятой величиной, характеризующей частоту вспышек в разных типах галактик, является SNu :

1 S N u = 1 S N 10 10 L ⊙ (B) ∗ 100 y e a r {\displaystyle 1SNu={\frac {1SN}{10^{10}L_{\odot }(B)*100year}}} ,

где L ⊙ (B) {\textstyle L_{\odot }(B)} - светимость Солнца в фильтре B. Для разных типов вспышек её величина составляет :

При этом сверхновые Ib/c и II тяготеют к спиральным рукавам.

Наблюдение остатков сверхновых

Каноническая схема молодого остатка следующая :

  1. Возможный компактный остаток; обычно это пульсар , но возможно и чёрная дыра
  2. Внешняя ударная волна, распространяющаяся в межзвёздном веществе .
  3. Возвратная волна, распространяющаяся в веществе выброса сверхновой.
  4. Вторичная, распространяющаяся в сгустках межзвёздной среды и в плотных выбросах сверхновой.

Вместе они образуют следующую картину: за фронтом внешней ударной волны газ нагрет до температур T S ≥ 10 7 К и излучает в рентгеновском диапазоне с энергией фотонов в 0,1-20 кэВ, аналогично газ за фронтом возвратной волны образует вторую область рентгеновского излучения. Линии высокоионизированных Fe, Si, S и т. п указывают на тепловую природу излучения из обоих слоёв.

Оптическое излучение молодого остатка создаёт газ в сгустках за фронтом вторичной волны. Так как в них скорость распространении выше, а значит газ остывает быстрее и излучение переходит из рентгеновского диапазона в оптический. Ударное происхождение оптического излучения подтверждает относительная интенсивность линий.

Теоретическое описание

Декомпозиция наблюдений

Природа сверхновых Ia отлична от природы остальных вспышек. Об этом ясно свидетельствует отсутствие вспышек Ib\c и II типов в эллиптических галактиках. Из общих сведений о последних известно, что там мало газа и голубых звёзд, а звездообразование закончилось 10 10 лет назад. Это значит, что все массивные звёзды уже завершили свою эволюцию, и остались звёзды с массой меньше солнечной, не более. Из теории эволюции звёзд известно, что звёзды подобного типа взорвать невозможно, а следовательно нужен механизм продления жизни для звёзд масс 1-2M ⊙ .

Отсутствие линий водорода в спектрах Ia\Iax говорит о том, что в атмосфере исходной звезды его крайне мало. Масса выброшенного вещества достаточно велика - 1M ⊙ , преимущественно содержит углерод, кислород и прочие тяжёлые элементы. А смещённые линии Si II указывает на то, что во время выброса активно идут ядерные реакции. Всё это убеждает, что в качестве звезды-предшественника выступает белый карлик, скорее всего углеродно-кислородный .

Тяготение к спиральным рукавам сверхновых Ib\c и II типов свидетельствует, что звездой прародителем являются короткоживущие O-звезды с массой 8-10M ⊙ .

Термоядерный взрыв

Один из способов высвободить требуемое количество энергии - резкое увеличение массы вещества, участвующего в термоядерном горении, то есть термоядерный взрыв. Однако физика одиночных звёзд такого не допускает. Процессы в звёздах, находящихся на главной последовательности, равновесны. Поэтому во всех моделях рассматриваются конечный этап звёздной эволюции - белые карлики . Однако сам по себе последний - устойчивая звезда, и всё может измениться только при приближении к пределу Чандрасекара . Это приводит к однозначному выводу, что термоядерный взрыв возможен только в кратных звёздных системах, скорее всего, в так называемых двойных звёздах .

В данной схеме есть две переменные, влияющие на состояние, химический состав и итоговую массу вовлечённого во взрыв вещества.

  • Второй компаньон - обычная звезда, с которого вещество перетекает на первый.
  • Второй компаньон - такой же белый карлик. Такой сценарий называет двойным вырождением.
  • Взрыв происходит при превышении предела Чандрасекара .
  • Взрыв происходит до него.

Общим во всех сценариях образования сверхновых Ia является то, что взрывающийся карлик скорее всего является углеродно-кислородным. Во взрывной волне горения, идущей от центра к поверхности, текут реакции :

12 C + 16 O → 28 S i + γ (Q = 16.76 M e V) {\displaystyle ^{12}C~+~^{16}O~\rightarrow ~^{28}Si~+~\gamma ~(Q=16.76~MeV)} , 28 S i + 28 S i → 56 N i + γ (Q = 10.92 M e V) {\displaystyle ^{28}Si~+~^{28}Si~\rightarrow ~^{56}Ni~+~\gamma ~(Q=10.92~MeV)} .

Масса вступающего в реакцию вещества определяет энергетику взрыва и, соответственно, блеск в максимуме. Если предположить, что в реакцию вступает вся масса белого карлика, то энергетика взрыва составит 2,2 10 51 эрг .

Дальнейшее поведение кривой блеска в основном определяется цепочкой распада :

56 N i → 56 C o → 56 F e {\displaystyle ^{56}Ni~\rightarrow ~^{56}Co~\rightarrow ~^{56}Fe}

Изотоп 56 Ni нестабилен и имеет период полураспада 6.1 дней. Далее e -захват приводит к образованию ядра 56 Co преимущественно в возбуждённом состоянии с энергией 1.72 МэВ. Этот уровень нестабилен, и переход электрона в основное состояние сопровождается испусканием каскада γ-квантов с энергиями от 0.163 МэВ до 1.56 МэВ. Эти кванты испытывают комптоновское рассеяние , и их энергия быстро уменьшается до ~ 100 кэВ. Такие кванты уже эффективно поглощаются фотоэффектом, и, как следствие, нагревают вещество. По мере расширения звезды плотность вещества в звезде падает, число столкновений фотонов уменьшается, и вещество поверхности звезды становится прозрачным для излучения. Как показывают теоретические расчёты, такая ситуация наступает примерно через 20-30 суток после достижения звездой максимума светимости.

Через 60 суток после начала вещество становится прозрачным для γ-излучения. На кривой блеска начинается экспоненциальный спад. К этому времени изотоп 56 Ni уже распался, и энерговыделение идёт за счёт β-распада 56 Co до 56 Fe (T 1/2 = 77 дней) с энергиями возбуждения вплоть до 4.2 МэВ.

Гравитационный коллапс ядра

Второй сценарий выделения необходимой энергии - это коллапс ядра звезды. Масса его должна быть в точности равна массе его остатка - нейтронной звезды, подставив типичные значения получаем :

E t o t ∼ G M 2 R ∼ 10 53 {\displaystyle E_{tot}\sim {\frac {GM^{2}}{R}}\sim 10^{53}} эрг,

где M = 0 , а R = 10 км, G - гравитационная постоянная. Характерное время при этом:

τ f f ∼ 1 G ρ 4 ⋅ 10 − 3 ⋅ ρ 12 − 0 , 5 {\displaystyle \tau _{ff}\sim {\frac {1}{\sqrt {G\rho }}}~4\cdot 10^{-3}\cdot \rho _{12}^{-0,5}} c,

где ρ 12 - плотность звезды, нормированная на 10 12 г/см 3 .

Полученное значение на два порядка превосходит кинетическую энергию оболочки. Необходим переносчик, который должен с одной стороны унести высвободившуюся энергию, а с другой - не провзаимодействовать с веществом. На роль такого переносчика подходит нейтрино.

За их образование отвечают несколько процессов. Первый и самый важный для дестабилизации звезды и начала сжатия - процесс нейтронизации :

3 H e + e − → 3 H + ν e {\displaystyle {}^{3}He+e^{-}\to {}^{3}H+\nu _{e}}

4 H e + e − → 3 H + n + ν e {\displaystyle {}^{4}He+e^{-}\to {}^{3}H+n+\nu _{e}}

56 F e + e − → 56 M n + ν e {\displaystyle {}^{56}Fe+e^{-}\to {}^{56}Mn+\nu _{e}}

Нейтрино от этих реакций уносят 10 %. Главную же роль в охлаждении играет УРКА-процессы (нейтринное охлаждение):

E + + n → ν ~ e + p {\displaystyle e^{+}+n\to {\tilde {\nu }}_{e}+p}

E − + p → ν e + n {\displaystyle e^{-}+p\to \nu _{e}+n}

Вместо протонов и нейтронов могут выступать и атомные ядра, с образованием нестабильного изотопа, который испытывает бета-распад:

E − + (A , Z) → (A , Z − 1) + ν e , {\displaystyle e^{-}+(A,Z)\to (A,Z-1)+\nu _{e},}

(A , Z − 1) → (A , Z) + e − + ν ~ e . {\displaystyle (A,Z-1)\to (A,Z)+e^{-}+{\tilde {\nu }}_{e}.}

Интенсивность этих процессов нарастает по мере сжатия, тем самым его ускоряя. Останавливает же это процесс рассеяние нейтрино на вырожденных электронах, в ходе которого термолизуются и запираются внутри вещества. Достаточная концентрация вырожденных электронов достигается при плотностях ρ n u c = 2 , 8 ⋅ 10 14 {\textstyle \rho _{nuc}=2,8\cdot 10^{14}} г/см 3 .

Заметим, что процессы нейтронизации идут только при плотностях 10 11 /см 3 , достижимых только в ядре звезды. Это значит, что гидродинамическое равновесие нарушается только в нём. Внешние же слои находятся в локальном гидродинамическом равновесии, и коллапс начинается только после того, как центральное ядро сожмётся и образует твёрдую поверхность. Отскок от этой поверхности обеспечивает сброс оболочки.

Модель молодого остатка сверхновой

Теория эволюции остатка сверхновой

Выделяется три этапа эволюции остатка сверхновой:

Расширение оболочки останавливается в тот момент, когда давление газа остатка уравняется с давлением газа в межзвёздной среде. После этого остаток начинает диссипировать, сталкиваясь с хаотично движущимися облаками. Время рассасывания достигает:

T m a x = 7 E 51 0.32 n 0 0.34 P ~ 0 , 4 − 0.7 {\displaystyle t_{max}=7E_{51}^{0.32}n_{0}^{0.34}{\tilde {P}}_{0,4}^{-0.7}} лет

Теория возникновения синхротронного излучения

Построение детального описания

Поиск остатков сверхновых

Поиск звёзд-предшественников

Теория сверхновых Ia

Помимо неопределённостей в теориях сверхновых Ia, описанных выше, много споров вызывает сам механизм взрыва. Чаще всего модели можно разделить по следующим группам :

  • Мгновенная детонация
  • Отложенная детонация
  • Пульсирующая отложенная детонация
  • Турбулентное быстрое горение

По крайней мере для каждой комбинации начальных условий перечисленные механизмы можно встретить в той или иной вариации. Но этим круг предложенных моделей не ограничивается. В качестве примера можно привести модели, когда детонируют сразу два белых карлика. Естественно, это возможно только в тех сценариях, когда оба компонента проэволюционировали.

Химическая эволюция и воздействие на межзвёздную среду

Химическая эволюция Вселенной. Происхождение элементов с атомным номером выше железа

Взрывы сверхновых - основной источник пополнения межзвёздной среды элементами с атомными номерами больше (или как говорят тяжелее ) He . Однако процессы их породившие для различных групп элементов и даже изотопов свои.

R-процесс

r-проце́сс - это процесс образования более тяжёлых ядер из более лёгких путём последовательного захвата нейтронов в ходе (n ,γ) реакций и продолжается до тех пор, пока темп захвата нейтронов выше, чем темп β − -распада изотопа . Иными словами среднее время захвата n нейтронов τ(n,γ) должно быть:

τ (n , γ) ≈ 1 n τ β {\displaystyle \tau (n,\gamma)\approx {\frac {1}{n}}\tau _{\beta }}

где τ β - среднее время β-распада ядер, образующих цепочку r-процесса. Это условие накладывает ограничение на плотность нейтронов, т.к.:

τ (n , γ) ≈ (ρ (σ n γ , v n) ¯) − 1 {\displaystyle \tau (n,\gamma)\approx \left(\rho {\overline {(\sigma _{n\gamma },v_{n})}}\right)^{-1}}

где (σ n γ , v n) ¯ {\displaystyle {\overline {(\sigma _{n\gamma },v_{n})}}} - произведение сечения реакции (n ,γ) на скорость нейтрона относительно ядра мишени, усреднённое по максвелловскому спектру распределения скоростей. Учитывая что, r-процесс происходит в тяжёлых и средних ядрах, 0.1 с < τ β < 100 с, то для n ~ 10 и температуры среды T = 10 9 , получим характерную плотность

ρ ≈ 2 ⋅ 10 17 {\displaystyle \rho \approx 2\cdot 10^{17}} нейтронов/см 3 .

Такие условия достигаются в:

ν-процесс

Основная статья: ν-процесс

ν-процесс - это процесс нуклеосинтеза, через взаимодействие нейтрино с атомными ядрами. Возможно, он ответственен за появление изотопов 7 Li , 11 B , 19 F , 138 La и 180 Ta

Влияние на крупномасштабную структуру межзвёздного газа галактики

История наблюдений

Интерес Гиппарха к неподвижным звёздам, возможно, был вдохновлён наблюдением сверхновой звезды (по Плинию). Наиболее ранняя запись, которая идентифицируется как запись наблюдений сверхновой SN 185 (англ. ) , была сделана китайскими астрономами в 185 году нашей эры. Самая яркая известная сверхновая SN 1006 была подробно описана китайскими и арабскими астрономами. Хорошо наблюдалась сверхновая SN 1054 , породившая Крабовидную туманность . Сверхновые звёзды SN 1572 и SN 1604 были видны невооружённым глазом и имели большое значение в развитии астрономии в Европе, так как были использованы в качестве аргумента против аристотелевской идеи, гласившей, что мир за пределами Луны и Солнечной системы неизменен. Иоганн Кеплер начал наблюдение SN 1604 17 октября 1604 года. Это была вторая сверхновая, которая была зарегистрирована на стадии возрастания блеска (после SN 1572, наблюдавшейся Тихо Браге в созвездии Кассиопеи).

С развитием телескопов сверхновые звёзды стало возможно наблюдать и в других галактиках, начиная с наблюдений сверхновой S Андромеды в Туманности Андромеды в 1885 году . В течение двадцатого столетия были разработаны успешные модели для каждого типа сверхновых и понимание их роли в процессе звездообразования возросло. В 1941 году американскими астрономами Рудольфом Минковским и Фрицем Цвикки была разработана современная схема классификации сверхновых звёзд.

В 1960-х астрономы выяснили, что максимальная светимость взрывов сверхновых может быть использована в качестве стандартной свечи , следовательно, показателя астрономических расстояний. Сейчас сверхновые дают важную информацию о космологических расстояниях. Самые далёкие сверхновые оказались слабее, чем ожидалось, что, по современным представлениям, показывает, что расширение Вселенной ускоряется.

Были разработаны способы для реконструкции истории взрывов сверхновых, которые не имеют письменных записей наблюдений. Дата появления сверхновой Кассиопея A определялась по световому эху от туманности , в то время как возраст остатка сверхновой RX J0852.0-4622 (англ. ) оценивается по измерению температуры и γ-выбросов от распада титана-44. В 2009 году в антарктических льдах были обнаружены нитраты , соответствующие времени взрыва сверхновой.

23 февраля 1987 года в Большом Магеллановом Облаке на расстоянии 168 тыс. световых лет от Земли вспыхнула сверхновая SN 1987A , самая близкая к Земле, наблюдавшаяся со времён изобретения телескопа. Впервые был зарегистрирован поток нейтрино от вспышки. Вспышка интенсивно изучалась с помощью астрономических спутников в ультрафиолетовом, рентгеновском и гамма-диапазонах. Остаток сверхновой исследовался с помощью ALMA , «Хаббла » и «Чандры ». Ни нейтронная звезда , ни чёрная дыра , которые, по некоторым моделям, должны находиться на месте вспышки, пока не обнаружены.

22 января 2014 года в галактике M82 , расположенной в созвездии Большая Медведица, вспыхнула сверхновая звезда SN 2014J . Галактика M82 находится на расстоянии 12 млн световых лет от нашей галактики и имеет видимую звёздную величину чуть менее 9. Данная сверхновая является самой близкой к Земле, начиная с 1987 года (SN 1987A).

Наиболее известные сверхновые звёзды и их остатки

  • Сверхновая SN 1604 (Сверхновая Кеплера)
  • Сверхновая G1.9+0.3 (Самая молодая из известных в нашей Галактике)

Исторические сверхновые в нашей Галактике (наблюдавшиеся)

Сверхновая Дата вспышки Созвездие Макс. блеск Рассто-
яние (св. лет)
Тип вспы-
шки
Дли-
тель-
ность види-
мости
Остаток Примечания
SN 185 , 7 декабря Центавр −8 3000 Ia ? 8-20 мес. G315.4-2.3 (RCW 86) китайские летописи: наблюдалась рядом с Альфой Центавра.
SN 369 неизвестно неиз-
вестно
неиз-
вестно
неиз-
вестно
5 мес. неизвестно китайские летописи: положение известно очень плохо. Если она находилась вблизи галактического экватора, весьма вероятно, что это была сверхновая, если же нет, она, скорее всего, была медленной новой.
SN 386 Стрелец +1,5 16 000 II ? 2-4 мес. G11.2-0.3 китайские летописи
SN 393 Скорпион 0 34 000 неиз-
вестно
8 мес. несколько кандидатур китайские летописи
SN 1006 , 1 мая Волк −7,5 7200 Ia 18 мес. SNR 1006 швейцарские монахи, арабские учёные и китайские астрономы.
SN 1054 , 4 июля Телец −6 6300 II 21 мес. Крабовидная туманность на Ближнем и Дальнем Востоке (в европейских текстах не значится, не считая туманных намёков в ирландских монастырских хрониках).
SN 1181 , август Кассиопея −1 8500 неиз-
вестно
6 мес. Возможно, 3C58 (G130.7+3.1) труды профессора Парижского университета Александра Некэма, китайские и японские тексты.
SN 1572 , 6 ноября Кассиопея −4 7500 Ia 16 мес. Остаток сверхновой Тихо Это событие зафиксировано во многих европейских источниках, в том числе и в записях молодого Тихо Браге . Правда, он заметил вспыхнувшую звезду лишь 11 ноября , но зато следил за ней целых полтора года и написал книгу «De Nova Stella» («О новой звезде») - первый астрономический труд на эту тему.
SN 1604 , 9 октября Змееносец −2,5 20000 Ia 18 мес. Остаток сверхновой Кеплера С 17 октября её стал изучать Иоганн Кеплер , который изложил свои наблюдения в отдельной книге.
SN 1680 , 16 августа Кассиопея +6 10000 IIb неиз-
вестно (не более недели)
Остаток Сверхновой Кассиопея А возможно замечена Флемстидом и занесена в каталог как 3 Кассиопеи .

Их возникновение - это довольно редкое космическое явление. В среднем в доступных наблюдению просторах Вселенной вспыхивает три сверхновых в столетие. Каждая такая вспышка представляет собой гигантскую космическую катастрофу, при которой выделяется невероятно много энергии. По самой грубой оценке такое количество энергии могло бы образоваться при одновременном взрыве многих миллиардов водородных бомб.

Достаточно строгая теория вспышек сверхновых пока отсутствует, но ученые выдвинули любопытную гипотезу. Они предположили, на основании сложнейших расчетов, что в ходе альфа-синтеза элементов ядро продолжает сжиматься. Температура в нем достигает фантастической цифры - 3 миллиарда градусов. При таких условиях в ядре значительно ускоряются различные ; в результате выделяется много энергии. Быстрое сжатие ядра влечет за собой столь же быстрое сжатие оболочки звезды.

Она тоже сильно разогревается, и протекающие в ней ядерные реакции, в свою очередь, сильно ускоряются. Таким образом буквально в считанные секунды выделяется громадное количество энергии. Это приводит к взрыву. Конечно, такие условия достигаются далеко не всегда, и потому сверхновые вспыхивают довольно редко.

Такова гипотеза. Насколько ученые правы в своих предположениях, покажет будущее. Но и настоящее привело исследователей к совершенно поразительным догадкам. Астрофизические методы позволили проследить, как уменьшается светимость сверхновых. И вот что выяснилось: в первые несколько дней после взрыва светимость уменьшается очень быстро, а затем это уменьшение (в течение 600 дней) замедляется. Причем каждые 55 дней светимость ослабевает ровно вдвое. С точки зрения математики, это уменьшение происходит по так называемому экспоненциальному закону. Хорошим примером такого закона является закон радиоактивного распада. Ученые высказали смелое предположение: выделение энергии после взрыва сверхновой обусловлено радиоактивным распадом изотопа какого-то элемента с периодом полураспада 55 дней.

Но какого изотопа и какого элемента? Эти поиски продолжались несколько лет. «Кандидатами» на роль подобных «генераторов» энергии выступили бериллий-7 и стронций-89. Они распадались наполовину как раз за 55 дней. Но выдержать экзамен им не довелось: расчеты показали, что энергия, выделяющаяся при их бета-распаде, слишком мала. А другие известные радиоактивные изотопы подобным периодом полураспада не обладали.

Новый претендент обнаружился среди элементов, которые на Земле не существуют. Он оказался представителем трансурановых элементов, синтезированных учеными искусственно. Имя претендента - калифорний, его порядковый номер - девяносто восемь. Его изотоп калифорний-254 удалось приготовить в количестве всего лишь около 30 миллиардных долей грамма. Но и этого поистине невесомого количества вполне хватило, чтобы измерить период полураспада изотопа. Он оказался равным 55 дням.

А отсюда возникла любопытная гипотеза: именно энергия распада калифорния-254 обеспечивает в течение двух лет необычайно высокую светимость сверхновой звезды. Распад калифорния происходит путем самопроизвольного деления его ядер; при таком виде распада ядро как бы раскалывается на два осколка - ядра элементов середины периодической системы.

Но каким образом синтезируется сам калифорний? Ученые и здесь дают логичное объяснение. В ходе сжатия ядра, предшествующего взрыву сверхновой, необычайно ускоряется ядерная реакция взаимодействия уже знакомого нам неона-21 с альфа-частицами. Следствием этого оказывается появление в течение довольно короткого промежутка времени чрезвычайно мощного потока нейтронов. Снова возникает процесс нейтронного захвата, но на сей раз уже быстрого. Ядра успевают поглотить очередные нейтроны раньше, чем подвернутся бета-распаду. Для этого процесса неустойчивость трансвисмутовых элементов уже не препятствие. Цепь превращений не порвется, и конец периодической таблицы тоже будет заполнен. При этом, видимо, образуются даже такие трансурановые элементы, которые в искусственных условиях еще не получены.

Ученые подсчитали, что при каждом взрыве сверхновой только калифорния-254 образуется фантастическое количество. Из такого количества можно было бы изготовить 20 шаров, каждый из которых весил бы столько, сколько наша Земля. Какова же дальнейшая судьба сверхновой? Она погибает довольно быстро. На месте ее вспышки остается лишь маленькая очень тусклая звездочка. Она отличается, правда, необычайно высокой плотностью вещества: наполненный им спичечный коробок весил бы десятки тонн. Такие звезды называют « ». Что происходит с ними дальше, мы пока не знаем.

Материя, которая выбрасывается в мировое пространство, может сгуститься и образовать новые звезды; они начнут новый долгий путь развития. Ученые сделали пока лишь общие грубые мазки картины происхождения элементов, картины работы звезд - грандиозных фабрик атомов. Быть может, это сравнение в общем передает суть дела: художник набрасывает на холсте лишь первые контуры будущего произведения искусства. Уже ясен основной замысел, но многие, в том числе и существенные, детали еще приходится лишь угадывать.

Окончательное решение проблемы происхождения элементов потребует колоссального труда ученых различных специальностей. Вероятно, многое, что сейчас нам представляется несомненным, на самом деле окажется грубо приблизительным, а то и вовсе неверным. Наверное, ученым придется столкнуться с закономерностями, до сих пор нам неизвестными. Ведь для того чтобы разобраться в сложнейших процессах, протекающих во Вселенной, бесспорно, понадобится новый качественный скачок в развитии наших представлений о ней.

 

 

Это интересно: